NCN / nanoHUB.org Overview
Category
Published on
Abstract
With over 110,000 unique users from 172 countries for the last 12 months, nanoHUB.org generates as much traffic as the Purdue website does. In this talk Dr. Klimeck will present the key features of nanoHUB and how it provides evident research impact on the community. He will also go over the Science Gateway Essentials, or the basic checklist for researchers to determine if the HUBzero platform is for them.
Bio
Gerhard Klimeck is the Director of the Network for Computational Nanotechnology at Purdue University and a Professor of Electrical and Computer Engineering. He guides the technical developments and strategies of nanoHUB.org which served over 89,000 users worldwide with on-line simulation, tutorials, and seminars in the year 2008. He was the Technical Group Supervisor of the High Performance Computing Group and a Principal Scientist at the NASA Jet Propulsion Laboratory. Previously he was a member of technical staff at the Central Research Lab of Texas Instruments where he served as manager and principal architect of the Nanoelectronic Modeling (NEMO 1-D) program. NEMO 1-D was the first quantitative simulation tool for resonant tunneling diodes and 1D heterostructures. At JPL and Purdue Gerhard developed the Nanoelectronic Modeling tool (NEMO 3-D ) for multimillion atom simulations. NEMO 3-D has been used to quantitatively model optical properties of self-assembled quantum dots, disordered Si/SiGe systems, and single impurities in Silicon. Both tools are based on the representation of the nanoelectronic device with atomistic empirical tight-binding. Quantitative device modeling was demonstrated without any material parameter adjustments, just by entry of geometrical structure parameters. At Purdue his group is developing a new simulation engine that combines the NEMO 1-D and NEMO 3-D capabilities into a new code entitled OMEN. Prof. Klimeck's research interest is in the modeling of nanoelectronic devices, parallel cluster computing, and genetic algorithms. Dr. Klimeck received his Ph.D. in 1994 on Quantum Transport from Purdue University and his German electrical engineering degree in 1990 from Ruhr-University Bochum. Dr. Klimec's work is documented in over 118 peer-reviewed journal and 115 proceedings publications and over 120 invited and 250 contributed conference presentations. He is a senior member of IEEE and member of APS, HKN and TBP. NEMO 1-D was recently demonstrated to scale to 23,000 parallel processors, NEMO 3-D was demonstrated to scale to 8,192 processors, and OMEN was demonstrated to scale to 65,536 processors.
http://www.nanohub.org/