
Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 1

Components follow the Model-View-Controller (MVC) design pattern. This
pattern separates the data gathering (Model), presentation (View) and user
interaction (Controller) activities of a module. Such separation allows for
expanding or revising properties and methods of one section without
requiring additional changes to the other sections.

In its barest state, no database entry or other setup is required to "install" a
component. Simply placing the component into the /components directory
will make it available for use. However, if a component requires the installa-
tion of database tables or configuration (detailed in a config.xml file), then
an administrator must install the component using one of the installation
options in the administrative back-end.

In the example, all component related files and sub-directories are split
between the administrator components and front-end components. In both
cases, the files are contained within directories titled "com_hello". Some
directories and files are optional but, for this example, we've included the
most common setup.

The file structure in the administrative portion of the component is exactly
the same as in the front side. Note that the view, models, controllers etc. of
the front and admin parts are completely separated, and have nothing to do
with each other - the front part and the admin part can be thought of as two
different components! A view in the /administrator/components/com_hello
folder may have a counterpart with the same name in the /components/
com_hello folder, yet the two views have nothing in common but their
name.

/{YourHub}
	 /administrator
	 	 /components
	 	 	 /com_hello
	 ...
	 /components
	 	 /com_hello
	 	 	 /models
	 	 	 	 foo.php
	 	 	 /views
	 	 	 	 /index
	 	 	 	 	 /tmpl
	 	 	 	 	 	 default.php
	 	 	 	 	 	 default.xml
	 	 	 controller.php
	 	 	 hello.php
	 	 	 router.php

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components

Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 2

Joomla! is always accessed through a single point of entry: index.php for
the Site Application or administrator/index.php for the Administrator Applica-
tion. The application will then load the required component, based on
the value of 'option' in the URL or in the POST data. For our component,
the URL would be:

http://yourhub.org/index.php?option=com_hello&view=hello

This will load our main file, which can be seen as the single point of entry
for our component: components/com_hello/hello.php.

1. First, we added some lines that check if site debugging is turned on. If
so, we turn on PHP error reporting. This can aid greatly in develop-
ment.

2. Next, we added the jimport call to include the component JView class.

3. Then we include our controller and create a new instance of it.

4. After the controller is created, we instruct the controller to execute the
task, as defined in the URL: index.php?option=com_hello&task=some

5. The controller might decide to redirect the page, usually after a task
like 'save' has been completed. This last statement takes care of the
actual redirection.

The main entry point (hello.php) essentially passes control to the controller,
which handles performing the task that was specified in the request.

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

// Check if debugging is turned on
// Turn on error reporting so we can more clearly see our PHP bugs
$config = JFactory::getConfig();
if ($config->getValue('config.debug')) {
	 error_reporting(E_ALL);
	 @ini_set('display_errors','1');
}

// Include the JView class
jimport('joomla.application.component.view');

// Require the base controller
require_once(JPATH_COMPONENT.DS.'controller.php');

// Create the controller
$controller = new HelloController();

// Perform the Request task
$controller->execute();

// Redirect if set by the controller
$controller->redirect();

/components/com_hello/hello.php

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components
http://yourhub.org/index.php?option=com_hello&view=hello
http://yourhub.org/index.php?option=com_hello&view=hello

Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 3

The base controller class for the front-end component is named {Compo-
nentName}Controller. So, the controller class for com_hello would be “Hel-
loController”

The two methods of note in this example are the execute() and hello()
methods.

In the execute method, we're explicitly declaring a list of available tasks and
what those tasks execute via the switch statement.

In our hello method, we're instantiating a new view, assigning it some data,
and then displaying the output. When we instantiate the view, weʼre explic-
itly telling it the name of the view we wish to load. We can also pass it a
specific layout to load, if needed. Otherwise, the layout loaded will be
named “default.” This tells the code to look for the view in
/components/com_hello/views/hello/tmpl/default.php

class HelloController extends JObject
{	
	 ...
	 public function execute()
	 {
	 	 $this->_task = JRequest::getString('task', '');
	 	
	 	 switch ($this->_task)
	 	 {
	 	 	 default: $this->hello(); break;
	 	 }
	 }
 	 ...
	 protected function hello()
	 {
	 	 // Instantiate a new view
	 	 $view = new JView(array('name'=>'hello'));
	
	 	 // Pass the view any data it may need
	 	 $view->greeting = 'Hello, World!';
	
	 	 // Output the HTML
	 	 $view->display();
	 }
}

/components/com_hello/controller.php

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components

Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 4

Views are written in PHP and HTML and have a .php file extension. View
scripts are placed in /com_{componentname}/views/, where they are further
categorized by the /{viewname}/tmpl. Within these subdirectories, you
will then find and create view scripts that correspond to each controller
action exposed; in the "hello" case, we have the view script default.php.

The variables assigned in the controller can be accessed from the template
using $this->{propertyname} (see the template code for an example).

Our template is very simple: we only want to display the greeting that was
passed in from the hello() method of our controller - this file is:
views/hello/tmpl/default.php

<?php

// No direct access

defined('_JEXEC') or die('Restricted access'); ?>

<h1><?php echo $this->greeting; ?></h1>

Note: For a information on view overrides see the “Component
Overrides” section of the documentation:
http://hubzero.org/documentation/0.9.0/webdevs/templates.
overrides

/components/com_hello/views/hello/tmpl/default.php

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/modules.loading
http://hubzero.org/documentation/0.9.0/webdevs/modules.loading
http://hubzero.org/documentation/0.9.0/webdevs/modules.loading
http://hubzero.org/documentation/0.9.0/webdevs/modules.loading

Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 5

class HelloController extends JObject
{	
	 ...
	 public function execute()
	 {
	 	 $this->_task = JRequest::getString('task', '');
	 	
	 	 switch ($this->_task)
	 	 {

 case: ‘world’: $this->world(); break;
	 	 	 default: $this->hello(); break;
	 	 }
	 }
 	 ...
	 protected function world()
	 {
	 	 $view = new JView(array('name'=>'world'));
	
	 	 $db =& JFactory::getDBO();
	 	 $db->setQuery('SELECT count(*) FROM #__components');
	 	 $view->component_count = $db->loadResult();

	
	 	 // Output the HTML
	 	 $view->display();
	 }
}

1. The first step is to obtain a reference to a database object. Since
Joomla! uses the database for its normal operation, a database con-
nection already exists; therefore, it is not necessary to create your
own.

2. Now that we have obtained a reference to the database object, we
can retrieve our data. We do this in two steps:

A. Store our query in the database object.

B. Load the result. The $db->loadResult() method will execute the
stored database query and return the first field of the first row of
the result.

In the example, weʼre passing the result directly to our view to be
used for displaying.

/components/com_hello/controller.php

1

2A

2B

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components

Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 6

class HelloController extends JObject
{	
 	 ...
	 protected function world()
	 {
	 	 $view = new JView(array('name'=>'world'));
	
	 	 $view->multiplier = JRequest::getInt('multiplier', 5);

	 	 $db =& JFactory::getDBO();
	 	 $db->setQuery('SELECT count(*) FROM #__components');
	 	 $view->component_count = $db->loadResult();

	 	 // Output the HTML
	 	 $view->display();
	 }
}

To retrieve GET/POST request data, Joomla! uses the getVar method of
the JRequest class (JRequest::getVar()).

If you have a form variable named 'address', you would want to use this
code to get it:

$address = JRequest::getVar('address');

If you want to specify a default value in the event that 'address' is not in the
request or is unset, use this code:

$address = JRequest::getVar('address', 'Address is empty');

Frequently, you will expect your variable to be found in a specific portion of
the HTTP request (POST, GET, etc...). If this is the case, you should specify
which portion; this will slightly increase your extension's security. If you
expect 'address' to only be in POST, use this code to enforce that:

$address = JRequest::getVar('address', 'Address is empty', 'post');

1. Here weʼre retrieving a variable named “multiplier” and have the de-
fault value set to 5. Weʼre using getInt instead of getVar to ensure any
data retrieved is an integer.

2. Now weʼre outputting the multiplication of our component count by the
multiplier we retrieved.

/components/com_hello/controller.php

1

<?php

// No direct access

defined('_JEXEC') or die('Restricted access'); ?>

<h1><?php echo ($this->component_count*$this->multiplier); ?></h1>

/components/com_hello/views/world/tmpl/default.php

2

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components

Components Front-end
Version HUBzero 1.0

Online http://hubzero.org/documentation/0.9.0/webdevs/components

 Page 7

class HelloController extends JObject
{	
 	 ...
	 protected function world()
	 {
	 	 $view = new JView(array('name'=>'world'));
	
	 	 $view->multiplier = JRequest::getInt('multiplier', 5);

	 	 if ($view->multiplier < 2) {
	 	 	 JError::raiseError(
	 	 	 	 500,
	 	 	 	 'The multiplier must be greater than 1'
);
	 	 	 return;
	 	 }

	 	 $db =& JFactory::getDBO();
	 	 $db->setQuery('SELECT count(*) FROM #__components');
	 	 $view->component_count = $db->loadResult();
	
	 	 // Output the HTML
	 	 $view->display();
	 }
}

Joomla! has its very own way of dealing with errors. Our gateway to this is
the static JError class. There are three error levels defined by Joomla! Er-
ror, Warning, and Notice.

This example explains how to raise a JError of the level error. We
should use this type of JError when we encounter a fatal problem, that is,
when the problem cannot be overcome and execution needs to stop. The
nice thing about this approach is that although the JError will be fatal, the
termination of the script will be graceful and will provide the user with an
understandable error page.

To raise a fatal JError, we use the static JError::raiseError() method. This
method requires two parameters, an error code and a message.

Other available methods:

JError::raiseNotice(); - A notice is informational. It should only indicate trivial
problems that are expected to occur periodically, but do not affect the flow
of the script execution.

JError::raiseWarning(); - These are specifically for use when an error oc-
curs that is not fatal, but alters the actions taken by the script.

/components/com_hello/controller.php

http://hubzero.org/documentation/0.9.0/webdevs/components
http://hubzero.org/documentation/0.9.0/webdevs/components

