cceHUB

HOME MY HUB RESOURCES CONTRIBUTORS EVENTS ABOUT SUPPORT

A Knowledge Discovery Environment for Cancer Care Engineering Research

Ann Christine Catlin HUBzero Workshop November 7, 2008

Register

Q Search

Login

a HUB for Cancer Care Engineering

CCE integrated project hierarchy

The Cancer Care Engineering (CCE) project is a highly innovative, interdisciplinary, multi-institutional endeavor that holds promise for revolutionizing the current paradigms of cancer prevention, detection, treatment and care delivery by focusing on translating cancer research into

C

O

Cancer Care Engineering Projects funded by the Regenstrief Foundation

CCE-1: A Multi-Agent Approach to Modeling of the Indiana CRC Care System

CCE-2: An Indianapolis CRC Quality Improvement Initiative

CCE-5: A Fusion Center for Cancer Care System Information – the Cancer Care

... highly innovative, interdisciplinary, multi-institutional endeavor ...

Ind CCE TEAM: more than 70 scientists, clinicians, statisticians, physicians, nurses, Ρι engineers, computer scientists, health service researchers, university and hospital e-l Re staff

Reduced and VA Center for Implementing Evidence-based Fractice IU Center for Health Services and Outcomes Research Department of Medicine, IU School of Medicine Department of Medicinal Chemistry and Pharmacology, Purdue University School of Chemical Engineering, Purdue University School of Electrical and Computer Engineering, Purdue University Department of Statistics, Purdue University	Laboratory Analysis, Conversion to Digital Data

CCE team: collaboration !

Using HUB Technology I

- Content Management System for Scientists
- Collaboration and Social Networking

0.0 Ranking Sherer: Predicting Patient-specific CRC ...
 0.0 Ranking Catlin: <u>A Hierarchical System Based ...</u>
 0.0 Ranking Germann: CCE-2: CRC Quality Improvement

RESOURCES	Events				ζ	Add	an ev	ent	
	Year Month Week Day								
Contrib	17 Oct, 2008 Improving CRC No-Show Rates: A Quality Improvement Initiative at IUMG and VAMC	A	All Categories 🔽 Go						
Start a co	to 12:30 PM Jamie Workman Germann, Associate Professor or Engineering Technology, IUPUI The Rengenstrief Center for Healthcare Engineering at Purdue University features Cancer Care Engineering health services research focused projects in its Brown Bag Seminar Series	¢	9				2	800	
		e	$_{\odot}$				Octo	ber	
Shared in	24 Oct, 2008 cceHUB: Bringing Data into the Cyber Infrastructure	S	М	Т	W	Ŧ	F	S	
The cceHUI their work. I	11:30 AM Category: Seminar	5	6	7	1	2	3	4	
the cceHUE	to 12:30 PM Ann Catlin, Rosen Center for Advanced Computing The cceHUB will be the first HUB community with a data layer incorporated. Learn what impact this will have on the CCE project.	12	13	14	15	16	17	18	
There are si ent types		15	20	21	22	23	24	25	
Animations Downloads Public	29 Oct, 2008 CCE Health Services Meeting: Visualization and Performance Dashboards	26	27	28	29	30	31		
Present your work Your contributions will become locate there.	O2:00 PM Category: Seminar to 03:30 PM We welcome Dr. David Ebert, Director of the Purdue University Regional Visualization and Analytics Center (PURVAC) and a faculty partner of the Purdue Homeland Security Institute] and other Purdue researchers and partners to our October 29th CCE Health Services Monthly Meeting Agenda:								
	Teaching Materials								

Integrative Mathematical Models

Patient data >

Shared models need shared data ...

× Monte-Carlo Simulator		
File		GCXGC MS Alignment
		🕜 Getting Started + 🕲 GC-GC-MS Datasets + 🕥 Model Parameters + 🕼 Output Selection + 🎱 Analyze
● Getting Started → ② Model Setup → ③ Model Conditions → ④ Simulate		🗙 xMass: the PDP Deconvolution Tool
		File
Nordling, 1953		OMICS Dataset + @ Parameters + @ Analyze
CRC is the result of a series of somatic mutations in a stem cell. Each This tool performs Monte Ca	to simulations on four colorectal cancer (CRC) incidence models which	
The sequential mutation mode	l of Nordling (1953) showed that a series of roughly six somatic mutations	Result Peak intensity vs Retention time
Moolgavkar,	log (CRC incidence) versus log(age) relationship.	
A series of somatic mutations leads to clonal expansion and an adenoma.	atic mutations) as an intermediate step to carcinoma. Then, any of the othe final transformation to a cancerous cell.	8e+03 - Z
Mutation of an ademonatous cell begins a CRC lineage.	of Loeve et al. (1999) describes the natural history of the	X xMass: the PDP Deconvolution Tool
File ger	X GCXGC MS Alignment	File
 © Gatting Started → Ø.GC.GC.MS Datasats → Ø.Model Parameters → Ø.Output Selection → C. K.V.		
for	1 Getting Started + 2 GC-GC-MS Datasets + 1 Model Parameters + 2 Output Se	
Statistical Modeling of GCxGC MS Data		Result: Peak intensity vs Retention time 💌 📮
The model uses curve matching, including centering and rescaling, to align GCxGC MS data. In terms of retention time and mass charge (m/z) the two-dimensional Correlation Distincted Warping algorithm (20-CDW) tries to identify common patterns	Choose input datasets	
by automatic alignment.	Choose input datasets from : CCCHOB data repository	
avk avk	Search renealdory for GC-GC-MS collections	3.05000 @ 1.00
orti	Search by collection name : Colon Cancer collection (public)	
INPUT OUTPUT ALGORITHM 13-	Search the repository by dataset collection name - some colle	× xMass: the PDP Deconvolution Tool
CDF datasets Total Ion Count Step 1: Calculate shift/alignment coefficients range of values for Selected mass charge values	Choose sample datasets from C are marked as protected and can be accessed only by identific cceHUB groups	1 <u>File</u>
retention time 1 Selected patient data retention time 2 Comparison graphs chromotograph generated at each m/z value in the m/z	Colon Cancer sample Colon Cancer collection (public):	OMICS Dataset + @ Parameters + @ Analyze
× xMass: the PDP Deconvolution Tool	Set X xMass: the PDP Deconvolution Tool	Devil Manufacture to the extent DI T file
³ File	Us <u>File</u>	Peak intensity vs Retention time
OMICS Dataset + @ Parameters + ③ Analyze	OMICS Dataset → ② Parameters → ③ Analyze	Scan. Mass/charge ratio of peptide peak vs Retention time
		54, 0. Noise level vs Retention time
Choose an OMIC input dataset		54, 0.3 View/download the output PAR file 54, 0.5 View/download the output DLT file
Choose input dataset from : cceHUB data repository	<	54,0.3 54,0.3 54,0.3 Download
	Analyte type: peptides	55, 0. 5555, M0, 445, 329, 446, 337, 20, 4224, 22, 0634, 1, 9
Search cceHUB data repository	Instrument: Ion Trap	55, 0. 5555, M0, 671. 456, 672. 464, 37. 8179, 12. 8296, 1, 9 56, 0. 565333, M0, 284, 397, 285, 405, 21. 537, 37. 0373, 1, 9
Choose dataset by : instrument	Data acquisition mode: Positive	b3, U, b345, MU, 765, 844, 767, 851, 13, 718, 11, 2247, 1, 9 70, 0, 7045, MO, 223, 122, 224, 13, 5, 59553, 8, 66283, 1, 9 72, 0, 7045, MO, 42, 326, 445, 204, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
	Mass weight diff: 0	72, 0, 7545, 70, 945, 300, 945, 339, 12, 2152, 23, 00/1, 1, 9 75, 0, 754667, M0, 698, 535, 699, 543, 18, 3411, 20, 0516, 1, 9 76, 0, 7545, M1, 389, 455, 390, 454, 41, 0623, 75, 1456, 1, 9
Search repository by instrument	Centrolization necessity: Profile (centrolization is necessary)	77, 0, 774333, M0, 309, 318, 310, 326, 8, 28319, 13, 531, 1, 9 79, 0, 794, M0, 365, 43, 366, 438, 12, 3953, 31, 0502, 1, 9
Which instrument 7: XCTPlus fon Trap	LC peak width: 5	88, 0. 8825, M0, 445. 403, 446. 411, 10. 2247, 25. 198, 1, 9 89, 0. 8925, M0, 581. 547, 582. 555, 7. 04737, 10. 7763, 1, 9
Search XCTPlus for LC/MSD TOF	min effective retention time (in mins): 5.0	91, 0. 9125, M0, 335. 373, 336. 381, 9. 31713, 11. 0533, 1, 9 94, 0. 9425, M0, 307. 314, 308. 322, 5. 71286, 16. 2451, 1, 9
Which XCTPlus Ion ESI TOF	max effective retention time (in mins): 65.0	Find: 🕘 🧿 Select All
Select Ld Select Ld	m/z variation between 2 isotopes: 0.12	1 result Parametere Clear
		Creat
		< Parameters
Parameters >	< OMICS Dataset	Analyze >

Unique Middleware for Modeling and Simulation

• OMIC workflow

- biosamples → biological data → biomarker knowledge …
 "data lifecycle" support
- end-to-end user support

Data ... the new shared resource

- data repository & data support infrastructure
- metadata ... annotate, track, characterize content

OMIC experiment workflows

OMIC data analysis workflows

