

### Network for Computational Nanotechnology-Collaborative Learning and Information Sharing for Global Challenges

#### **HUBzero Workshop**

Indianapolis, IN April 12-14, 2010

#### **Rajinder P. Khosla**

Program Director Electrical, Communications, and Cyber-Systems (ECCS) Division National Science Foundation rkhosla@nsf.gov



# **Presentation Outline**

- Historical Perspective
- Network for Computational Nanotechnology (NCN)
- NCN supports NSF and NNI Goals
- HUBzero
- Conclusion









#### John Backus

Chemistry (Virginia) & Mathematics (Columbia) SSEC (IBM) Fortran (IBM) Algol (IBM) Fellow (IBM) Computing Language



#### IBM 360



Engineering Physics (SDakota State U) Physics (Wisconsin) Design Engineer (IBM) Stretch/7030/360 Amdahl Corp. Trilogy Systems, ...

Gerrit Blaauw

EE (Lafayette College) Physics (Harvard) Design Engineer (IBM) Stretch/8000/360 Professor (Twente)



Fred Brooks

Physics (Duke) & Engineering Physics (Harvard) Design Engineer (IBM) Stretch/7030/360 Computer Organization (IBM) Processor Engineer (IBM) Professor (UNC) 4/23/2010



Stanley Mazor

Mathematics (SFSU) Programmer (Fairchild) Digital Designer (Digital) 4004 Code Software (Intel)

Computing

EE (RPI) EE (Stanford)

Computer on a chip 1968

Physics (U. Padua)

MOS Process (Fairchild)

Automated Logic Design (Intel)

Test Systems & Applications (Intel)

IC Designer (Intel)

RPKHOSLA



Federico Faggin



RISC Reduced Instruction set Computer

John Cocke

Mech. Engr. & Math (Duke) Harvest (IBM) Reduced Instruction Set (IBM)



Marc Auslander

Math (Princeton) Formac (IBM) PL.8 (IBM)



Greg Chaitin

Math (City College) Algorithmic Theory (IBM)



#### **Charles Bennett**

Chemistry (Brandeis) Physics (Harvard) Molecular Dynamics (Argonne) Information Physics (IBM)



#### Personalization: Communications and Computing





### **Sharing and Openness**

#### Sharing Knowledge





### Network for Computational Nanotechnology (NCN)

- Nanoscale Modeling and Simulation Solicitation (NSF 00-36) resulted in seven awards (2000)
- "Molecular Nanoelectronics: Simulation from Molecules to Circuits," NSF award to Purdue University under the leadership of Prof. Mark Lundstrom (2000). Purdue University Network Computing Hubs (PUNCH)
- Expansion of the Purdue's web-based "Nanosimulation" Capability Workshop (2001)
- NCN-A Multidisciplinary, Multi-university Core Team designed to encourage the broader participation of communities in research and education (2002)
- nanoHUB (2004)/HUBzero (2007)



#### Network for Computational Nanotechnology (NCN) Infrastructure





### **Collaborative Discovery**

3D Particle Ion Channel Simulator



Modeling Electron Transport in High-Mobility Transistors



#### Spacer-based Nanolaser



4/23/2010



### **Education & Diversity**





4/23/2010



### nanoHUB Global-Impact







# NCN Supports NSF Goals

- Discovery
  - Advancing the Frontiers of Knowledge
- Learning
  - Science & Engineering Workforce and Scientific Literacy
- Research Infrastructure
  - Advanced Instrumentation and Facilities
- Stewardship
- Supporting Excellence in Science and Engineering Research with their Integration into Education.



## NCN supports NNI Goals

- Advance a world-class research and development program
- Foster technology transfer for commercial and public benefit
- Develop and sustain educational resources, a skilled workforce, and the supporting research infrastructure and tools
- Support responsible development of nanotechnology





4/23/2010

RPKHOSLA



# Conclusion

- Throughout history, sharing information and solving challenges in a *collaborative fashion* have led to major discoveries in science, engineering and technology.
- Many current and future societal challenges will necessitate even a larger collaborative effort, which requires network infrastructure such as the *NCN and the HUBzero*. There are many opportunities to extend the HUBzero concept to new areas such as security, health care, environment, energy, and transportation.
- NCN is an outstanding example of a Cyberinfrastructure in support of the NSF vision- ' to Advance the discovery, innovation and education beyond the frontiers of current knowledge, and empowering future generations in science and engineering.'



# **Thank You!**