
The HUBzero Git Flow
Kevin Wojkovich <kevinw@purdue.edu>

kevinwojo

Git with the flow … man

mailto:kevinw@purdue.edu

Audience
● HUBzero Core Developers

● HUBzero Hosted Hub

Developers

● External developers

Objective
● You will gain an understanding of how HUBzero’s git repository is structured.

● You will understand the HUBzero Monthly Release Cycle.

● You will understand how to contribute changes to:

○ A HUBzero-supported instance

○ The HUBzero Core (open source)

● You will refresh yourself on git fundamentals.

Understanding HUBzero’s Branches
● 2.1.0 -> 2.1 branch

○ We made a decision after the branch was

created to use it as our development branch.

● 2.1.x -> stable branches

○ These are production branches. They will

receive critical fixes after the release until the

new stable branch is created. All changes are

reflected in 2.1.0

● master -> 2.2x

○ This branch has major changes such as:

■ Removing Joomla dependencies

■ Moving the HUBzero Framework

back into the CMS repository

Understanding HUBzero’s Branches

Week # Sun Mon Tue Wed Thurs Fri Sat

1 bug-fix bug-fix Target
Release Clean up Priority

Mtg.

2(+) develop develop develop develop develop

3
develop develop develop

QA prep
&

develop

develop
&

RC1

4 Testing &
Bug-fix

Testing &
Bug-fix

Testing &
Bug-fix

Testing &
Bug-fix

Testing &
Bug-fix

QA Prep: All QA / Scan hosts are re-cloned to mirror production.

Release Candidate 1 (RC1): New development is ‘frozen’ at end of business. Items that did not make the release are flagged and
reprioritized for the future. A change list will be prepared and distributed to Testing Team.

Develop: Items (tickets and projects) prioritized for development are worked on & high / critical issues as-needed.
Bug-fix: Tickets generated from testing round are addressed and any high / critical issues as-needed.

Testing: Expectation that students, community managers, and hub owners verify fixes and newly introduced features. Will supplement with
automated testing in future.
Clean-up: Tickets are closed, asana is updated, major breakages are hot-fixed.

Monthly Release Cycle

Hosted Hub Flow (app directory)

HUBzero CMS Structure
● The CMS has two main directories:

○ app - hub-specific code

■ Custom extensions

■ Template

■ Configuration

■ Uploads (app/site)

○ core - common hub code

■ Libraries (core/vendor)

■ Standard distribution extensions

■ Default templates

■ Composer

Hub Update Flow - dev/prod configuration

Bare repo
(hubzero core +
deployment app)

hubzero-cms repo
(2.1.3 branch)

Clone of bare Clone of bare

merge

push
pull

Dev Production

https://github.com/hubzero/hubzero-cms

pull

Hub Update Flow - dev/stage/prod configuration

Bare repo
(hubzero core +
deployment app)

hubzero-cms repo
(2.1.3)

Clone of bare Clone of bare

Merge

push pull

Stage
Production

https://githhub.com/hubzero/hubzero-cms

Clone of bare

Dev

push

pull

Contributing Changes in the App Directory (dev/stage)
For Today:

1. Sync your local branch with stage/prod.

a. Git pull --rebase

2. Make your changes.

3. Test your changes on dev.

4. Commit the changes.

a. git add <files>

b. git commit -am “Message”

5. If you have a stage machine, git push.

6. If you have a stage machine: test on stage.

7. Submit ticket to pull onto production on

next release cycle*

* When RC1 is created, it is difficult to promote

changes to production.

Separation of App Directory
In the future:

1. Make changes.

2. Push to your gitlab repository.

3. Submit Merge Request

4. Wait for approval and automatically pushed

to production.

a. Automated checks for style and linting.

b. HUBzero Developer Review

i. Security

ii. Stability

iii. Quality

c. Not dependant on release cycle.

HUBzero Core Contributions

HUBzero CMS Structure
● The CMS has two main directories:

○ app - hub-specific code

■ Custom extensions

■ Template

■ Configuration

■ Uploads (app/site)

○ core - common hub code

■ Libraries (core/vendor)

■ Standard distribution extensions

■ Default templates

■ Composer

Materials

● An account on github.com

● A development environment

○ Preference given to personal

development environment

○ AWS, Vagrant, (Docker coming

soon), VMware, or your own hub

from packages.

● Git

○ yum/apt-get install git

● Recommended: tig

○ yum/apt-get install tig

Making a Core Contribution with Github
1. Fork the hubzero-cms repository.

a. Creates <username>/hubzero-cms

2. Clone your fork.

3. Add upstream to pull down latest changes.

4. Update your local branch.

5. Make a feature branch.

6. Make your changes.

7. Keep your feature branch up-to-date.

8. Push to your fork.

9. Submit a pull request.

a. Compares your fork with the original.

10. Switch back to local branch.

11. Update your local branch.

This flow is for those who want to contribute code

to the ‘core’ directory of the hubzero-cms

repository:

https://github.com/hubzero/hubzero-cms

These instructions also carry over to the hubzero

framework repository:

https://github.com/hubzero/framework

https://github.com/hubzero/hubzero-cms
https://github.com/hubzero/hubzero-cms
https://github.com/hubzero/framework
https://github.com/hubzero/framework

Github Flow
(simplified)

hubzero-cms

framework

Hubzero accountYour Github account

hubzero-cms

Developer Environment

/var/www/hub

hubzero-cms

1
fork

2
clone

3
pull4

push

5
Pull

Request

1. Fork the repo.

2. Clone the repo to your dev
Environment.

3. Pull changes from upstream.

4. Push changes to your repo.

5. Submit a Pull Request.

6. Repeat steps 3 - 5.

Wrap Up
● Understand the organization of the Hubzero

CMS repository.

● Understand the setup of Hosted Hub

environment.

● See how to make changes to app directory

extensions on Hosted Hub environment.

● See how to submit changes to Hubzero Core

(hubzero/hubzero-cms).

● Understand the Hubzero Release Cycle.

● Preview proposed separation of app & core

directories in the CMS.

● Reinforce some git basics.

Useful Git[hub] Documentation
● Forking a repo & keeping it up-to-date

○ https://help.github.com/articles/fork-a-repo/

● Submitting a pull request

○ https://help.github.com/articles/creating-a-pul

l-request/

● Tutorial on almost everything you can do

with git

○ http://www.vogella.com/tutorials/Git/article.h

tml

● The git Book

○ https://git-scm.com/book/en/v2

● HUBzero Documentation

○ https://hubzero.org/documentation/2.1.0/web

devs/index.contributions

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
http://www.vogella.com/tutorials/Git/article.html
http://www.vogella.com/tutorials/Git/article.html
http://www.vogella.com/tutorials/Git/article.html
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://hubzero.org/documentation/2.1.0/webdevs/index.contributions
https://hubzero.org/documentation/2.1.0/webdevs/index.contributions
https://hubzero.org/documentation/2.1.0/webdevs/index.contributions

Git Command Cheatsheet
● git pull --rebase <remote> <branch>

○ Rewrites history to keep tree flat.

● git remote add <name> <url>

○ Adds a remote called name from a url or file

system path.

● git fetch --all

○ Updates information of all remotes.

○ Does not modify the branch.

● git add <files>

○ Stages a file for commit.

● git rm <files>

○ Remove a file from history in this commit.

● git commit -m “Message”

○ Forms a commit out of staged files.

● git remote -v

○ Shows the remotes of your repository.

● git push origin <branch>

○ Allows you to push to the origin remote.

● git push upstream <branch>

○ Only Senior-Level HUBzero Team Members

have access to do this on

hubzero/hubzero-cms.

● git checkout -b <feature-branch>

○ Creates a branch from the currently checked

out branch and switches to the new branch.

○ same history at this point

● git reset <ref> --hard

○ Resets to a known point.

● git log

○ Shows the commit log.

● git status

○ Shows the current state of your repository.

Questions?

