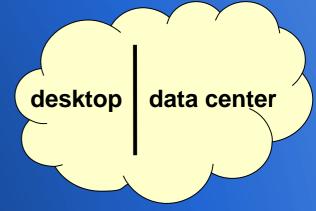
Volunteer Computing and Hubs

David P. Anderson

Space Sciences Lab University of California, Berkeley

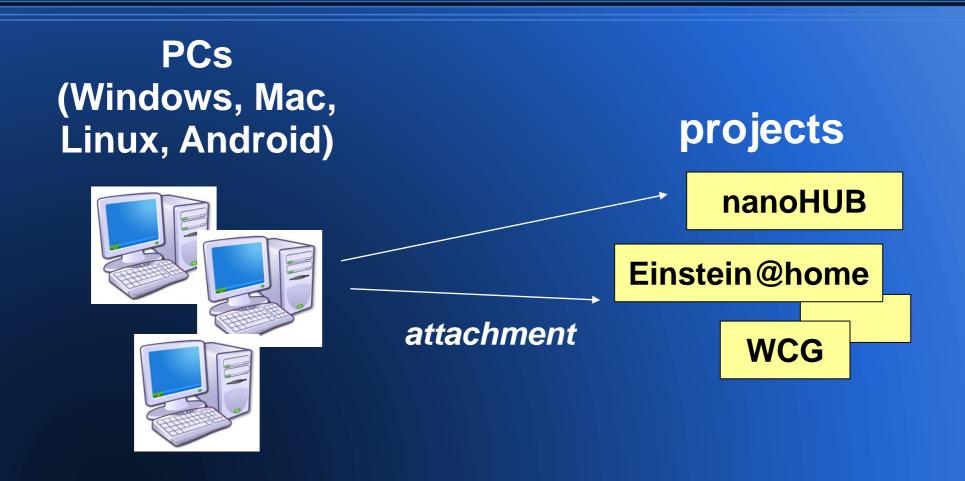
> HUBbub September 26, 2013


Computing resources

Consumer

PCs
laptops
mobile devices
appliances

volunteer computing


Organizational

desktop grid computing cluster, cloud, Grid, super computing

BOINC

How BOINC works

It works best for...

- Large bags of tasks
- Throughput-oriented
- Moderate RAM, disk usage
- Moderate data/compute ratio
 - < 1 GB per hour</p>

Volunteer computing status

- Volunteers: 400K people, 600K computers, 2M cores
- > 50 science projects, e.g.
 - Climateprediction.net (Oxford)
 - Einstein@home (Max Planck Inst.)
 - IBM World Community Grid
 - "umbrella" project; MGI is one
- > 15 PetaFLOPS, many million jobs/day
 - Potential: many ExaFLOPS

Adding BOINC to Hubs

Goal: increase the computing throughput available to Hub users

- A Hub has an associated BOINC project
- Large batches of jobs submitted to the Hub are run using the BOINC project
- Hub users attach their PCs to the project
- Project can be accessible to the public

BOINC Web RPC Interfaces

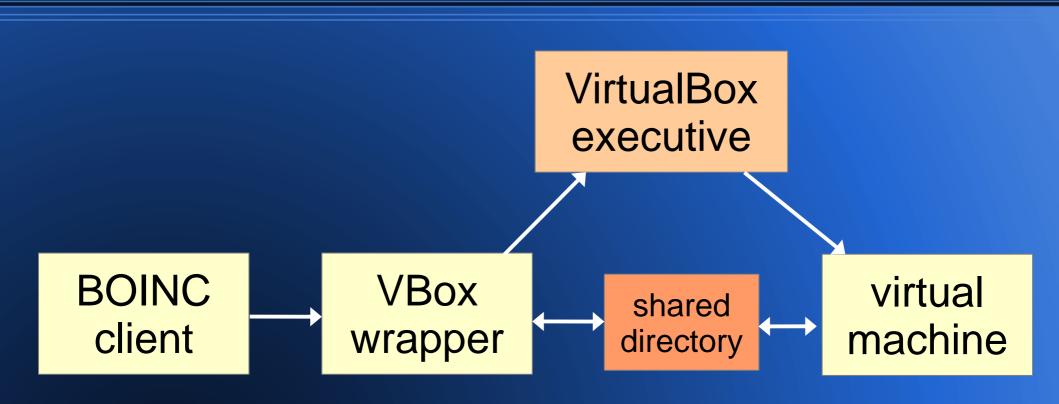
- Remote job submission
 - get batch completion estimate
 - submit/query/abort batches
- File management
 - content-based: only 1 copy of a given file
 - reference-counting, garbage collection

Identity and access control

- Each Hub user has a corresponding BOINC account
- BOINC enforces access control for job submission

User quotas

- Each user has a "quota" determining the fraction of computing they get
- May be set in proportion to
 - user's computing contribution
 - other Hub contributions
- BOINC's job scheduling policy
 - do small batches before large ones
 - don't starve large batches
 - enforce quotas over the long term


Using VM technology

- Heterogeneity of volunteer PCs
- Difficult to port applications to all platforms

BOINC VM-based apps

- Developers work in environment of choice
- App consists of
 - compressed minimal VM image (same across multiple apps)
 - executable
 - BOINC "Vbox wrapper"
- Volunteers need to install VirtualBox

How it works

VM bonuses

- Vbox wrapper creates a "snapshot" every few minutes
 - free checkpointing
- A VM is a strong security sandbox
 - can potentially deploy untrusted apps

Implementation

- Proof of concept in nanoHUB
 - VM with Tcl, Rappture library
 - Job submission via Web or workspace "submit"
 - Behind firewall for now
- To do
 - Add "batch" notion to HUBzero
 - Use BOINC's job-submission interfaces
 - Automate identity management

Branding and marketing

- How to market to volunteers?
- Brand: nanoHUB@home or HUB@home?
 - Sometimes fewer brands are better

Conclusion

- HUBzero and BOINC are complementary
 - more computing power to scientists
 - more science options for the public
- Contact
 - http://boinc.berkeley.edu
 - davea@ssl.berkeley.edu
- BOINC Workshop
 - Grenoble, Sept 25-27 2013