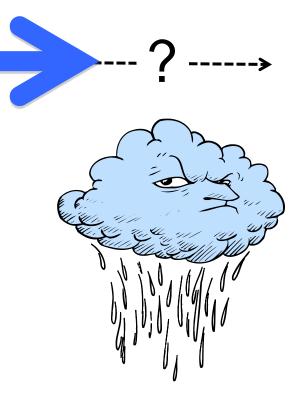
The nanoHUB-U Initiative

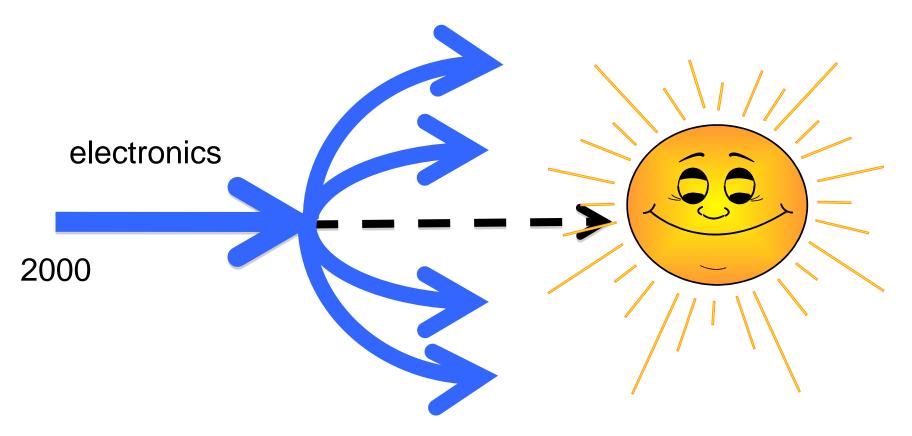
Mark Lundstrom and Supriyo Datta

Network for Computational Nanotechnology
Birck Nanotechnology Center
Purdue University, West Lafayette, Indiana USA

21st Century Electronics


Moore's Law may end soon. What then?

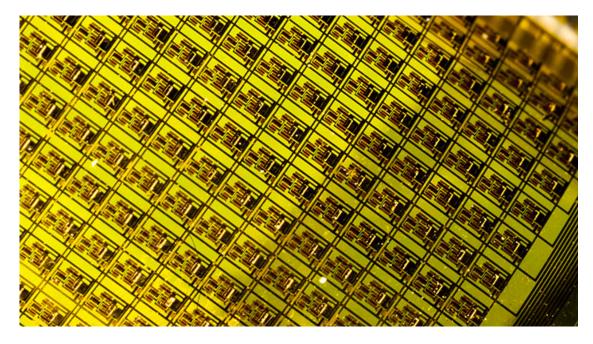
taster, smaller, cheaper....


Vacuum tubes ~ 1900

transistor

CMOS ~ 1947 ~ 1959 ~ 1980's

The "Era of Accelerated Technology Innovation"



More diverse, less predictable rapidly changing, problem-driven

21st Century Electronics

21st Century Electronics

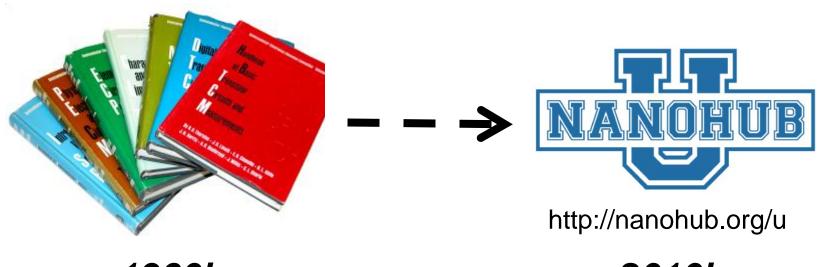
Bio-integrated electronics for cardiac therapy
This flexible, waterproof circuit can wrap the surface of the heart...

John Rogers Research Group: http://rogers.matse.illinois.edu

needed today: technology maestros

society's grand challenges

technology maestros:

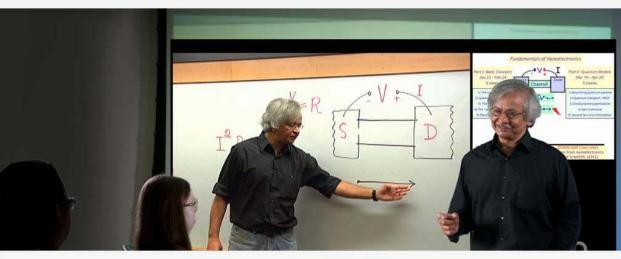

- Are deep in their field
- Understand related disciplines and technologies
- Able to learn, adapt, and contribute (quickly)

an opportunity

SEEC

Semiconductor Electronics Education Committee

R.B. Adler, et al., 1960-1967



1960's

2010's

Truly a fabulous learning experience."

— past nanoHUB-U student

Welcome to nanoHUB-U

Transcending disciplines with short courses accessible to students in any branch of science or engineering.

Cutting-edge topics distilled into short lectures with quizzes, homework, practice exams.

SELF-PACED COURSES FOR FREE

Learn at your own pace.

LIVE SHORT COURSES FOR \$30

Interact with nanoHUB-U profs

Coming Fall 2013: "Thermoelectric Science and Technology" and "Electronic Biosensors"

EDUCATORS

Use nanoHUB-U on your campus

CERTIFICATES, BADGES, CREDIT

Nano-tuts

Short tutorials taught succinctly by our award-winning professors.

Topics based on your suggestions!

Lessons from Nanoscience

Low-cost lecture notes from World Scientific Publishing Co.

LECTURES

L5.1: The Ultimate MOSFET and Beyond - Fundamental Limits

> Play video > YouTube > Download > L5.1 Slides > Quiz

L5.2: The Ultimate MOSFET and Beyond - Heterostructure FETs

> Play video -> YouTube -> Download -> L5.2 Slides -> Quiz

L5.3: The Ultimate MOSFET and Beyond - Heterostructure BJTs

> Play video > YouTube > Download > L5.3 Slides > Quiz

L5.4: The Ultimate MOSFET and Beyond - The CMOS Inverter

> Play video -> YouTube -> Download -> L5.4 Slides -> Quiz

L5.5: The Ultimate MOSFET and Beyond - CMOS Logic Performance

> Play video > YouTube > Download > L5.5 Slides > Quiz

L5.6: The Ultimate MOSFET and Beyond - Analog/RF CMOS

> Play video → YouTube → Download → L5.6 Slides → Quiz

DISCUSSION FORUM

> Week 5 discussion

HOMEWORK

- > Week 5 homework
- Submit Week 5 homework here
- > Load VSspice > VS Model 45nm CMOS.txt
 - **Special Thanks to Professors Dimitri Antoniadis and Jacob White of MIT for the HW exercises and and the SPICE like circuit simulation tool.
- ⇒ Extended Homework Problem Set
- Solutions
- Extended Homework Problem Set Solutions

Tutorial: The Ultimate MOSFET and Beyond - Homework Solution

→ Play video → YouTube → Download

EXAM

> Week 5 exam > Retake (optional)

For more details, see the Course Exam Policies on the FAQ Page

REFERENCES AND SUPPLEMENTAL MATERIALS

> Comments about Digital Circuits

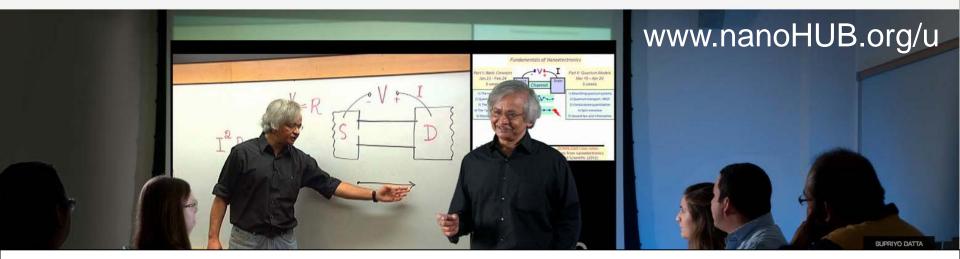
about nanoHUB-U

- Rethinking traditional topics.
- A forum for evolving viewpoints.
- Short (5 weeks) but not superficial.
- Designed to "transcend disciplines" and be broadly accessible.
- Focus on seniors, beginning grad students, working engineers.

nanoHUB-U numbers

- Launched in Spring 2012
- 7 courses offered by 6 instructors
- More than 2500 students:

65 countries represented318 universities represented72 companies represented



http://nanohub.org/u

Increasing use on-campus in "blended courses"

- past nanoHUB-U student

"Thanks to your team ... for introducing courses on subjects that are **never to be found anywhere** -- accessible for all students worldwide.

While the concept of MOOC from other platforms...are just catching up... nanoHUB saw it's potential way before others and stands out as a unique one from others for its quality content .. delivery format...above all choice of subject titles. Thanks!"

-nanoHUB-U student in Australia

plans, directions, goals

 Expand curriculum, engage other faculty, other universities, industry partnerships, figure out certification and credit, sustainability, etc.

Goals:

- Become a major, global forum for the developing the **new** educational resources needed for 21st Century electronics.
- 2) Learn how to use these technologies to transform on-campus education.

The first nanoHUB-U offering

Fundamentals of Nanoelectronics

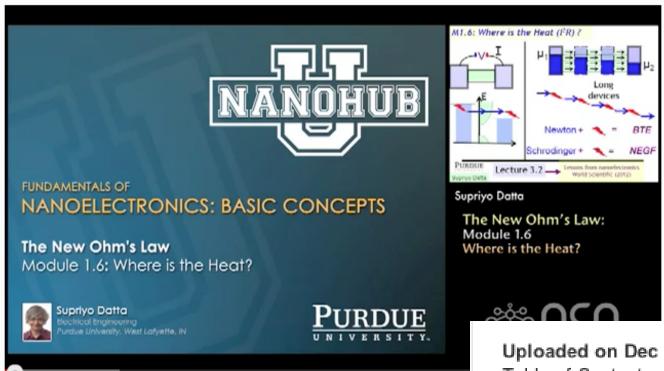
Part I: Basic Concepts
Jan.23 – Feb.24, 2012

~ 600 registered

Part II: Quantum Models

Mar. 19 – *Apr.* 20, 2012

~ 400 registered


- 1) The new Ohm's law
- 2) Quantum of resistance
- 3) The nanotransistor
- 4) The "spinning" electron
- 5) Electricity from heat

- 1) Describing quantum systems
- 2) Quantum transport: NEGF
- 3) Conductance quantization
- 4) Spin transistor
- 5) Second law and information

https://nanohub.org/groups/u-spring2012-sdatta01a

WEEK 1 The new "Ohm's law" for nanoscale res	istors
LECTURES	DISCUSS
M1.1 The New Ohm's Law - Change in Paradigm > Play video > YouTube > Download > Quiz	> Week 1 discussion
M1.2 The New Ohm's Law - Two Key Concepts > Play video > YouTube > Download > Quiz	HOMEWORK
M1.3 The New Ohm's Law - Why Electrons Flow > Play video > YouTube > Download > Quiz	> Week 1 homework > Solutions
M1.4 The New Ohm's Law - Generalized Ohm's Law > Play video > YouTube > Download > Quiz	Problem 1 tutorial > Play video > YouTube > Download
M1.5 The New Ohm's Law - Conductivity and Ballistic Conductivity	Problem 2 tutorial > Play video > YouTube > Download
> Play video -> YouTube -> Download -> Quiz	Problem 3 tutorial
M1.6 The New Ohm's Law - Where is the Heat? > Play video > YouTube > Download > Quiz	> Play video > YouTube > Download
LECTURE NOTES	> Play video > YouTube > Download
> Week 1 Slides	EXAM

http://www.youtube.com/watch?v=gFRII8phF_M

nanoHUB-U Fundamentals of Nanoelectronics I: M'

0:05 / 25:10

Uploaded on Dec 18, 2011

Table of Contents:

00:09 Recap

04:30 Joule heating

06:30 How contacts get heated

09:25 Elastic resistors are conceptually simpler

16:40 Elastic resistors in series

21:15 Mechanics and thermodynamics

https://nanohub.org/groups/u-spring2012-sdatta01a

2.5 hours of video lecture
 4 problems with solutions

wee in six 25-minute modules (M)

resistors

4 problems with solutions
 and video tutorials (T)

LECTURES

M1.1 The New Ohm's Law - Change in Paradigm

> Play video -> YouTube -> Download -> Quiz

M1.2 The New Ohm's Law - Two Key Concepts

> Play video -> YouTube -> Download -> Quiz

M1.3 The New Ohm's Law - Why Electrons Flow

> Play video -> YouTube -> Download -> Quiz

M1.4 The New Ohm's Law - Generalized Ohm's Law

> Play video -> YouTube -> Download -> Quiz

M1.5 The New Ohm's Law - Conductivity and Ballistic

Conductivity

> Play video > YouTube > Download > Quiz

M1.6 The New Ohm's Law - Where is the Heat?

> Play video > YouTube > Download > Quiz

LECTURE NOTES

> Week 1 Slides

DISCUSS

> Week 1 discussion

HOMEWORK

- > Week 1 homework
- Solutions

Problem 1 tutorial

> Play video > YouTube > Download

Problem 2 tutorial

> Play video > YouTube > Download

Problem 3 tutorial

→ Play video → YouTube → Download

Problem 4 tutorial

→ Play video → YouTube → Download

EXAM

> Week 1 exam

> Retake (optional)

"Flipped Syllabus"

Syllabus

	<u>Video Lectures</u>	Text (LNE)
Exam 1 (8/29): The new Ohm's law	Part I: M1.1-1.6, T1.1-1.4	L1-4
Exam 2 (9/12): Quantum of conductance	Part I: M2.1-2.6, T2.1-2.4	L5
Exam 3 (9/26): Nanotransistor	Part I: M3.1-3.6, T3.1-3.4,	L6-8
Exam 4 (10/10): Spin valve	Part I: M4.1-4.6, T4.1-4.4	L14
Exam 5 (10/24): Thermoelectricity, Entro	ру <i>Part I:</i> М5.1-5.5, Т5.1-5.4	L10,11
Law of equilibrium	Part II: M5.1-5.3	L16
Exam 6 (11/7): Quantum systems	Part II: M1.1-1.6, T1.1-1.4	L18
Exam 7 (11/21): Quantum transport	Part II: M2.1-2.6, 3.1 T2.1-2.4,	L19,20