




### **BioTeam**

Who, What, Why ...

- Independent consulting shop
- Staffed by scientists forced to learn IT, SW & HPC to get our own research done
- 10+ years bridging the "gap" between science, IT & high performance computing
- We get to see how many groups of smart people tackle similar problems





# Why I'm here

Not a Hub Expert. Simply a Bio/IT Nerd

- One of my clients decided to deploy HubZero last year
  - I was involved in initial eval and source / VM based installs
- Met HZ team 'virtually' while:
  - Hacking Submit framework to support the Grid Engine job scheduler
  - Building a <u>chef cookbook</u> to automate Hub installs onto Amazon EC2 node images
- HubBub'13 folks invited me to talk life science HPC and where Hubs can play a role
- May also be a token Corporate/Industry/
   Enterprise science type



### Goal: "Talk Fast & Get Out Of The Way"

| Quick Sprint Life Science Informatics                                                            | 1 |
|--------------------------------------------------------------------------------------------------|---|
| Basic Bio-IT Landscape Overview of our apps and requirements                                     | 2 |
| Hub Stories War stories from our eval, testing & deployment                                      | 3 |
| <a href="#"> <time permitting=""> </time></a> Observations, additional details & maybe a promise | 4 |



### **Life Science Informatics**

#### Biology and Computer Science are a natural fit

 Atoms, molecules & complex structures such as DNA and Protein easily characterized, stored and represented in ways that computers can read & understand

#### We have 3 core problems:

- Compute: studying biological data requires sophisticated algorithms, advanced statistical methods and vast amounts of raw computational power
- Storage: Our field is drowning in petabytes of data. Inexpensive lab instruments now routinely *generate terabyte volumes of data per experiment*
- Information Management & Triage: Rate at which we are generating new data exceeds rate at which the storage industry is increasing drive capacity.
   Something has to give.

### And one big "meta problem"

More details on that later ...

### The Cliche Example

"Next Generation" Genome Sequencing

- Advances in genome sequencing methods are outpacing Moore's Law
- Since the end of the Human Genome Project, cost-per-base of DNA sequencing has dropped 10,000-fold
- What took an intense global research effort years and billions of \$ can now be done with a \$50,000 instrument sitting on a desktop



Illumina MiSeq

"Personal Sequencer"

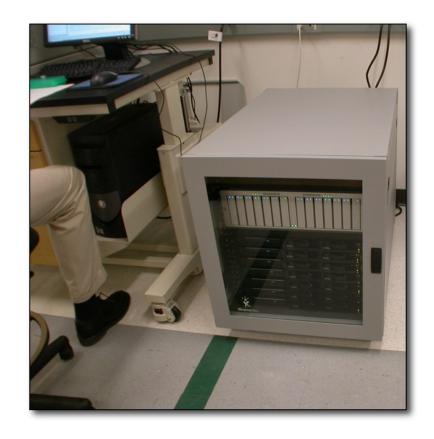


### **Big Picture / Meta Issue**

This is the driver behind many "Bio-IT" design efforts ...

- HUGE revolution in the rate at which lab platforms are being redesigned, improved & refreshed
  - Example: CCD sensor upgrade on that confocal microscopy rig just doubled storage requirements
  - Example: The 2D ultrasound imager is now a 3D imager
  - Example: Illumina HiSeq upgrade just doubled the rate at which you can acquire genomes. Massive downstream increase in storage, compute & data movement needs
- For the above examples, do you think IT was informed in advance?




### The Central Problem Is ...


Science progressing way faster than IT can refresh/change

- Instrumentation & protocols are changing FAR FASTER than we can refresh our Research-IT & Scientific Computing infrastructure
  - Bench science is changing month-to-month ...
  - ... while our IT infrastructure only gets refreshed every 2-7 years
- We have to design systems TODAY that can support unknown research requirements & workflows over many years (gulp ...)

### The Central Problem Is ...

- The easy period is over
- 5 years ago we could toss inexpensive storage and servers at the problem; even in a nearby closet or under a lab bench if necessary
- That does not work any more; real solutions required



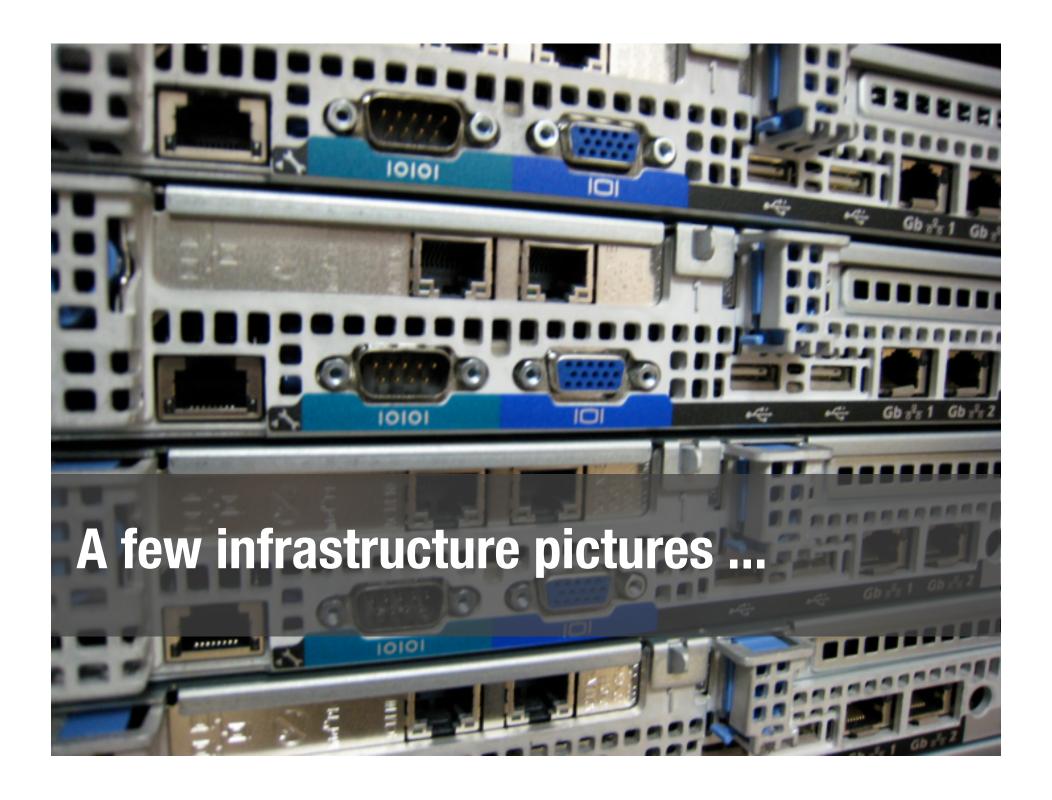


# This is our new normal.

Thousands of CPU cores; petabytes of disk

## And a related problem ...

- It has never been easier to acquire vast amounts of data cheaply and easily
- Growth rate of data creation/ ingest exceeds rate at which the storage industry is improving disk capacity
- Not just a storage lifecycle problem. This data \*moves\* and often needs to be shared among multiple entities and providers
  - ... ideally without punching holes in your firewall or consuming all available internet bandwidth






### If we get it wrong ...

The stakes are high.

- Lost opportunity
- Missing capability
- Frustrated & very vocal scientific staff
- Problems in recruiting, retention, publication & product development
- And in the clinic: Improper & potentially lifealtering medical guidance





The cliche image



# Lab local HPC & storage



Small core w/ multiple NGS instrument support

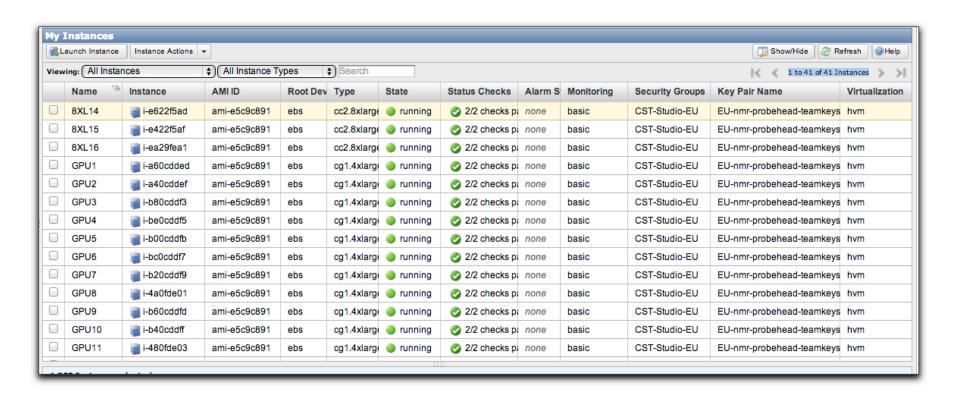


**Large Core Facility** 



**Large Core Facility: Just Storage** 




Regional Scientific Computing "Hub"



Physical data movement station; Unit= Naked Disk



# Physical Ingest Repo & "Naked" Data Archive



# 30 of Amazon's largest nodes + 22 GPU nodes: \$30/hr via spot market

Yep. This counts.



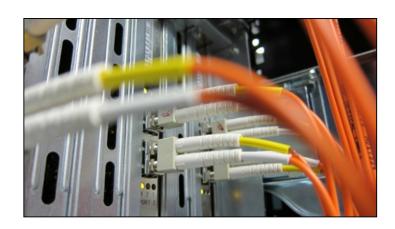
### **Core Compute**

Compute related design patterns largely static

- Linux compute clusters are still the baseline compute platform
- Even our lab instruments know how to submit jobs to common HPC cluster schedulers
- Compute is not hard. It's a commodity that is easy to acquire & deploy in 2013



### File & Data Types


We have them all

- Massive text files
- Massive binary files
- Flatfile 'databases'
- Spreadsheets everywhere
- Directories w/ 6 million files
- Large files: 600GB+
- Small files: 30kb or smaller



## **Application characteristics**

- Mostly SMP/threaded apps performance bound by IO and/or RAM
- Hundreds of apps, codes & toolkits
- 1TB 2TB RAM "High Memory" nodes becoming essential
- Lots of Perl/Python/R
- MPI is rare
  - Well written MPI is even rarer
- Few MPI apps actually benefit from expensive low-latency interconnects\*
  - \*Chemistry, modeling and structure work is the exception



# Storage & Data Management

### LifeSci core requirement:

- Shared, simultaneous read/write access across many instruments, desktops & HPC silos
- NAS = easiest option
- Scale Out NAS products are the default standard
- Parallel & Distributed storage for edge cases and large organizations



# Storage & Data Management

- Storage & data mgmt. is the #1 infrastructure headache in life science environments
- Most labs need "peta capable" storage due to unpredictable future
  - Only a small % will actually hit 1PB
  - Often forced to trade away performance in order to obtain capacity
- Object stores and commodity "Nexentastor-style" methods are making significant inroads



## **Data Movement & Data Sharing**

### Peta-scale data movement needs

- Within an organization
- To/from collaborators
- To/from suppliers
- To/from public data repos

### Peta-scale data sharing needs

 Collaborators and partners may be all over the world



### We Have Both Ingest Problems

Physical & Network

- Significant physical ingest occurring in Life Science
  - Standard media: naked SATA drives shipped via Fedex
- Cliche example:
  - 30 genomes outsourced means 30 drives will soon be sitting in your mail pile
- Organizations often use similar methods to freight data between buildings and among geographic sites



## **Physical Ingest Just Plain Nasty**

- Easy to talk about in theory
- Seems "easy" to scientists and even IT at first glance
- Really really nasty in practice
  - Incredibly time consuming
  - Significant operational burden
  - Easy to do badly / lose data





## **Huge Need For Network Ingest**

- 1. Public data repositories have petabytes of useful data
- 2. Collaborators still need to swap data in serious ways
- 3. Amazon becoming an important repo of public and private sources
- 4. Many vendors now "deliver" to the cloud





# Cloud(s)

Mainstream in life science for quite some time

 laaS clouds offer excellent "pressure release valve" when rapidly changing scientific requirements can't be satisfied by on-premise infrastructure #!/bin/sh

- Economics can't be ignored
- Popular meeting ground for data swapping and collaboration
- Data providers pushing cloud deliv over physical media
- Interesting AWS use cases for archive and "downloader pays" methods

```
knife ec2 server create \
-d chef-full \
-N hubzeroTestNode \
-f t1.micro \
--image ami-4d20a724 \
--security-group dag-HZ \
-i ~/bioteam/bioteam-IAM-admins-v1.pem \
--ssh-key bioteam-IAM-admins-v1 \
-x admin
```

### **Cloud Hubs & Portals**

The 'neutral' meeting ground ...

- Many types of entities need to meet, collaborate and exchange life science data
- Data sharing hubs and portals becoming popular on public laaS clouds like AWS



### Why?

 Far easier than punching holes in your firewall and issuing VPN credentials to outsiders

# **Cloud Data Repositories**

Compelling economics

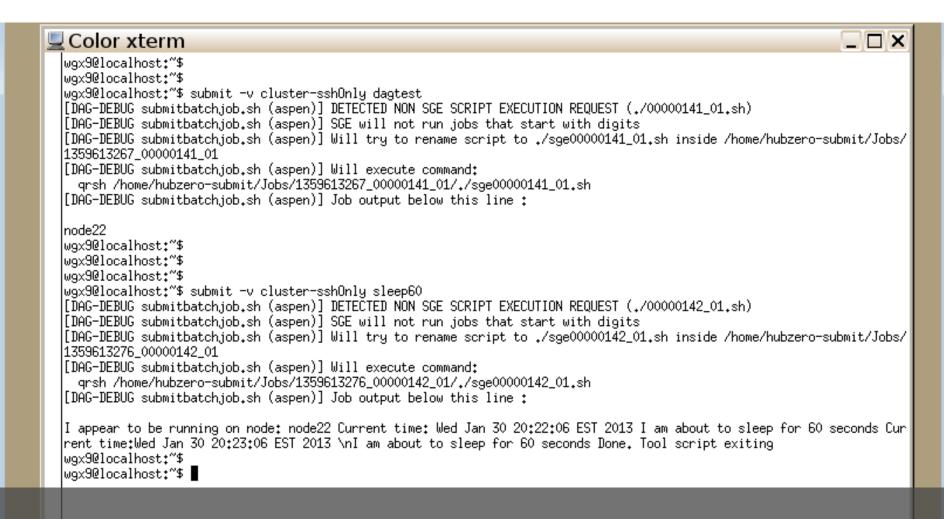
 laaS clouds becoming 'center of gravity' for large scale scientific data hosting

#### Why?

- Very compelling pricing
- You don't pay for the bandwidth used by consumers of your data
- AWS has some very interesting 'downloader pays' models that seem to be a good fit for grant-funded science with mandated multi-year data accessibility requirements






www.1000genomes.org



## It all boils down to this ...

## Life Science In One Slide:

- Huge compute needs but not intractable and generally solved via Linux HPC farms. Most of our workloads are serial/batch in nature
- Ludicrous rate of innovation in lab drives a similar rate of change for our software and tool environment
- With science changing faster than IT, emphasis is on agility and flexibility - we'll trade performance for some measure of future proofing
- Buried in data. Getting worse. Individual scientists can generate petascale data streams.
- We have all of the Information Lifecycle problems: Storing, Curating, Managing, Sharing, Ingesting and Moving



## **HUBs for Life Science Informatics**















## hubzero and one .gov

My Hub Story

- Sub-contractor to much larger company that won HPC and scientific support contract for division of a very large US .gov disease and public health organization
- Our team has very a specific technical/HPC & scientific computing support mission
  - ... and a general mission to enhance collaboration, data and knowledge sharing very diverse group of dedicated professionals.
- HZ recommended by a team member and supported by senior internal sponsor

## hubzero and one .gov, cont.

My Hub Story

#### I was part of a group that did

- Initial evaluation
- Initial trial deployments
- Technical assessment report for the "go|no-go" decision
- "resources required to operate" report

#### Along the way ...

- Made ugly hacks to Submit() framework to enable integration with Grid Engine managed HPC Clusters
- ... met a few HZ team members virtually

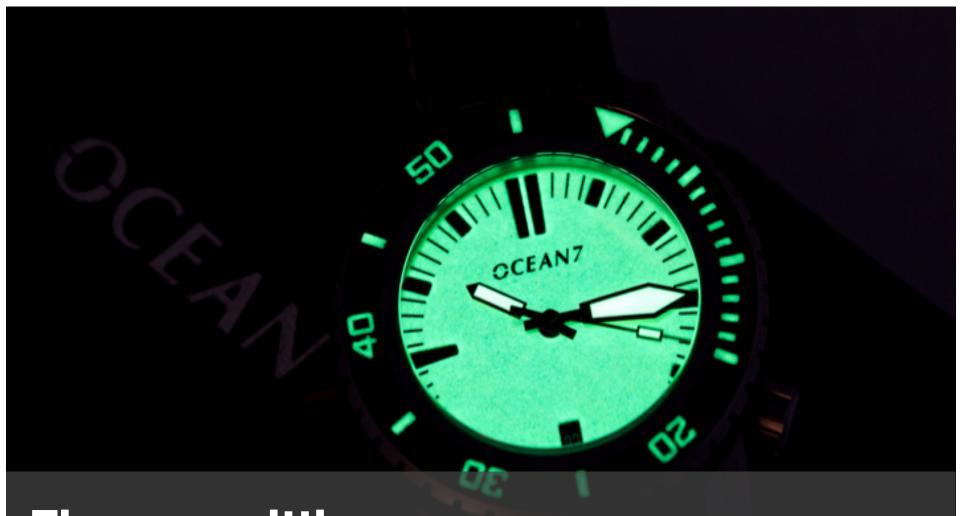
## hubzero and one .gov, cont.

My Hub Story

- And in my free time (non-work) ...
  - Started work on <u>Opscode Chef Cookbook</u> for automated installation of Hubzero onto AWS Cloud and other automated DevOps environments
  - http://bioteam.net/2012/12/hubzero-on-the-cloud/

```
#!/bin/sh
knife ec2 server create \
    --verbose \
    --template-file /Users/dag/opscode-platform-projects/bioteam/chef-repo/.chef/bootstrap/debian6-gems.erb \
    -availability-zone us-east-lb \
    -security-group dag-HZ \
    -node-name hubzeroTestNode \
    --flavor t1.micro \
    --image ami-4d20a724 \
    --ssh-user admin \
    --identity-file /Users/dag/opscode-platform-projects/bioteam/bioteam-IAM-admins-v1.pem \
    --ssh-key bioteam-IAM-admins-v1
```

### **Current Status**


Hubzero and .gov story

- In production & formally deployed
  - ... but in small-scale pilot mode
- Successful integration with Grid Engine and our HPC cluster & storage environment
- Primary current use is documentation
- Secondary focus will be Collaboration/Projects
- Beginning to recruit users and encourage the more 'social' collaboration and self-publishing features

## **Future Status**

Our sweet spots and interest areas ...

- Very significant interest in courseware & learning
- Very significant interest in the DataStore features
- Interest in tags, especially automated tagging
- Interest in the fine-grained security model & role-based access to content
- Interest in automated/API-driven content creation. Possibly by lab instruments that auto publish experimental result summaries w/ links to data repository location



Time permitting ...

## Time?

A few more details

- 1. My take on our Hubzero assessment
- 2. Enterprise integration war stories
- 3. Potential Personal Promise

## My \$.02: Internal Hubzero assessment

Speaking for myself, not my employer or .gov team!

#### Initial Impressions

- Very positive
- The public hubs are doing a great job at evangelizing
- Particularly good job at delivering a CMS that understands the org structure and working behaviors of real scientists
- Great foundation for what we were looking to do

#### Observed, however:

- Not many commercial/industry users publicly visible
- HZ not easily deployed in enterprise environments (OS/vm/etc)
- The most sophisticated Hubs appear to be hosted at Purdue where they depend on internal expert support and may also leverage knowledge that otherwise may not be well documented

## My \$.02: Internal Hubzero assessment

Speaking for myself, not my employer or .gov team!

#### Assessment summary outcome:

- Worth pursuing; great features and capabilities
- IT Infrastructure requirements for running a hub are trivial relative to the stuff we have already supporting petascale genomics

#### However:

 Human resource requirements were non trivial and if senior management was serious about deploying a hub in any meaningful way they would have to commit real dollars and real staff to the effort.

## My \$.02: Internal Hubzero assessment

Speaking for myself, not my employer or .gov team!

- Human resources required for a successful Hubzero deployment:
  - Salaried FTE or part-time internal employee (NOT AN OUTSIDE CONTRACTOR) required to build community, configure the Hub and serve as Community Manager
  - Need a Web Developer w/ creative skills and UI experience (the best hubs have great UI and visuals)
  - Need a Joomla CMS expert on contract or on-call
  - Existing IT staff would need C++/Rapture training

## **War Stories**

Episodes that drove the assessment results

- 1. Outsider vs Insider issues
- 2. Enterprise deployment issues
- 3. Authentication & identity management
- 4. 'Featured' Article adventures
- 5. Submit() and Rapture adventures

# One last thing ...

# One last thing

- In 2013 when I can ...
  - ... Launch a completely integrated 500 CPU/GPU cluster on AWS with 1 command typed from my macbook
  - ... Launch a full Wordpress stack with global CDN, SSLaware load balancers, geographically replicated SQL datastores and an elastic fleet of webservers via a single CloudFormation .json template
- It's hard to believe that Hubzero is not available for everyone as a single button click on Amazon or Google Compute

# One last thing

- I've benefited personally and professionally from open source over the years; have always tried to contribute back in kind
- If there is interest in making Hubzero available in forms other than VM files and package-based installs I might be able to contribute
- Personal interests include:
  - Packaging Hubzero for <u>AWS Marketlpace</u> (\$0.00 product)
  - Creating Opscode Chef Cookbook that can auto build and deploy Hubzero from packages on any Debian/Ubuntu OS

