
LAUNCHING TOOLS WITH INVOKE SCRIPTS

Launching tools with invoke scripts

Overview

Invoke scripts are small programs, usually written in sh or bash, used to setup the application
container environment so the tool can run properly. More specifically, invoke scripts are
responsible for:

Locating tool.xml for Rappture applications
Setting up the PATH and other optional environment variables
Starting the window manager
Starting optional subprograms, like filexfer
Starting the application

For most applications, the invoke script is a single command that calls the default HUBzero
invoke script, named invoke_app, with a few options set. In some rare situations, the tool needs
the application container setup in a manner that invoke_app cannot handle. In these cases, the
tool developer can modify the tool's invoke script to appropriately setup the application
container.

The sections below list out details regarding the options of invoke_app, how to launch Rappture
tools using an invoke script that calls invoke_app, and how to launch non-Rappture tools using
an invoke script that calls invoke_app.

invoke_app and its options

HUBZero's default tool invocation script is called invoke_app. It is a bash script, usually located
in /usr/bin. When called with no options, the script tries to automatically find the needed
information to start the applications. There are a number of options that can be provided to alter
the script's behavior.

invoke_app accepts the following options:

 -A tool arguments
 -c execute command in background
 -C command to execute for starting the tool
 -d working directory
 -e environment variable (${VERSION} substituted with $TOOL_VERSION)
 -f No FULLSCREEN
 -S No submit
 -n nanowhim version

 1 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

 -p add to path (${VERSION} substituted with $TOOL_VERSION)
 -r rappture version
 -t tool name
 -T tool root directory
 -u use environment packages
 -w specify alternate window manager

Here is a detailed description of the options:

-A Pass the provided enquoted arguments onto
the tool.

Example usage:

-A "-q blah1 -w blah2"

The options -q and -w are not parsed by
invoke_app, but are passed on to the tool

-c Commands to run in the background before the
tool launches.

Example usage:

-c "echo hi" -c "filexfer"

This prints "hi" to stdout and starts filexfer
-C Command to execute for starting tool. Tool's

command line arguments can be included in
this option, or can be placed in the -A option.

Example usage:

Call a program, named myprog, located in the
tool's bin directory:

-C @tool/bin/myprog

Call a program, named myprog, located in the
tool's bin directory, with program arguments "-e
val1" and "-b val2":

 2 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

-C "@tool/bin/myprog -e val1 -b val
2"

Call a program, named myprog, located in the
tool's bin directory with arguments -e val1 and
-b val2, used in conjunction with invoke_app's
-A option:

-C @tool/bin/myprog -A "-e val1 -b
val2"

Call a program, named myprog, located in the
tool's bin directory. We can omit the path of the
program if it is an executable and located in the
tool's bin directory because the tool's bin
directory is added to the PATH environment
variable. This would not work for calling a Perl
script in a fashion similar to perl myscript.pl
because in this case, perl is executable and
myscript.pl is the argument.:

-C myprog

Call simsim with no arguments:

-C simsim

Call simsim with the options -tool and -values,
to be parsed by simsim:

-C "simsim -tool driver.xml -values
 random"

Call simsim with the options -tool and -values,
to be parsed by simsim:

 3 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

-C simsim -A "-tool driver.xml -val
ues random"

-d Change to this working directory. By default
change to session directory.

-e Set an environment variable.

Example usage:

-e LD_LIBRARY_PATH=@tool/../${VERSI
ON}/lib:${LD_LIBRARY_PATH}

Within the value part of this option's argument,
the text ${VERSION} is automatically
substituted with the value of the variable
${TOOL_VERSION}. Similarly, the text @tool is
substituted with the value of ${TOOLDIR}. By
setting the environment variable, you are
overwritting its previous value.

-f no full screen - disable FULLSCREEN
environment variable, used by Rappture, to
expand the window to the full available size of
the screen.

-p Prepend to the PATH environment variable.

Example usage:

-p @tool/../${VERSION}/bin

Within the value part of this option's argument,
the text ${VERSION} is automatically
substituted with the value of the variable
${TOOL_VERSION}. Similarly, the text @tool is
substituted with the value of ${TOOLDIR}. By
setting this option the PATH environment
variable is adjusted, but not overwritten. The
directory @tool/bin is automatically added to
the PATH environment variable.

-r Sets ${rappture_version} which dictates which
version of Rappture is used. If left blank the
version will default to the special keyword
"system", which represents whichever version
is pointed to by the default Rappture
environment in "use". A "use -e -r rappture" will
be performed to figure out where Rappture is

 4 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

installed.

If set to the special keyword "none", searching
for Rappture executables (rappture, simsim,
about) will be skipped and use of these
executables will be disabled.

This flag works well on hubs where multiple
versions of rappture are installed. Users can
specify their own version of Rappture to use by
updating the PATH environment variable to
include the directory where the "rappture"
executable is installed.

-S Disable submit client and run job locally. This
flag takes no arguments and is used for
debugging. It disables the use of submit client
from the -C command that will be executed.
The default behavior, when the flag is not given,
is to run the command through the submit client
unless the command is "rappture", "simsim",
"getrappturexml", or "nanowhim", none of which
are run through the submit client. Setting the
flag on the command line will add your
command to the list of commands that do not
run with the submit client.

-t sets ${toolname} which is used while setting up
tool paths for TOOLDIR and TOOLXML.
${toolname} is the short name (or project name)
of the tool. It is the same as the name used in
the source code repository. With respect to the
tool contribution process, it is the "toolname" in
the path
/apps/toolname/version/rappture/tool.xml.
Setting this option will change the paths
searched while trying to locate tool.xml and the
bin directory.

-T Tool root directory. This is the directory holding
a checked out version of the code from the
source code repository. It typically has the src,
bin, middleware, rappture, docs, data, and
examples directories underneath it. With
respect to the tool contribution process, it is the
"/apps/toolname/version" in the path
/apps/toolname/version/rappture/tool.xml.
Setting this option will change the paths
searched while trying to locate tool.xml and the

 5 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

bin directory. Typically when testing this option
is used to specify where the tool directory is. In
this case, its the present working directory:

-T $PWD

-u Set use scripts to invoke before running the
tool.

Example usage:

-u octave-3.2.4 -u petsc-3.1-real-
gnu

These would setup octave-3.2.4 and petsc-3.1
in the environment that your tool would launch
in.

-w Set the window manager. The default value is
to use the ratpoison window manager if it
exists. If ratpoison is not installed on the
system, look for the icewm captive window
manager setup. Use this flag to choose an
alternative window manager. If your application
does not require a window manager specify
headless. The possible options are headless,
ratpoison, captive, and icewm. If multiple
options are specified the first one listed is
selected.

Examples:

Use the icewm captive window manager.

-w captive

Use no window manager.

-w headless

invoke_app is called from within a tool's invoke script. The invoke script is stored in the
middleware directory of the tool's source code repository.

 6 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

Using invoke_app with Rappture tools

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a Rappture application looks similar to this:

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C rappture

In the invoke script above, invoke_app, located in the directory /usr/bin, is called with "$@" , "-t
calc", and "-C rappture". "$@" represents all options that the invoke script itself received. "-t
calc" tells invoke_app that the toolname is "calc". "-C rappture" tell invoke_app to execute the
rappture command. This information is used by invoke_app to figure out which tool it is
supposed to be launching and where that tool is installed.

For most Rappture applications, the invoke script is very simple. The above is enough for
invoke_app to start looking for a tool.xml file. invoke_app looks for the file named tool.xml. It
uses the TOOLDIR variable to help decide where to look. If the tool.xml file is not found in the
${TOOLDIR}/rappture directory, invoke_app will exit explaining that it could not find the tool.xml
file. The TOOLDIR variable can be set from the command line using the -T flag:

/usr/bin/invoke_app "$@" -t calc \
 -C rappture \
 -T ${PWD}

Actually, it is more common to see the -T flag provided to a tool's invoke script, and the option is
forwarded to invoke_app by "$@":

./middleware/invoke -T ${PWD}

In the above example, the TOOLDIR variable is set to the present working directory, which is
stored in the variable PWD. Specifying the -T option is usually not needed, but can help when
invoke_app is confused on what it is supposed to be launching.

Using invoke_app with Jupyter Notebook tools

 7 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a Jupyter Notebook application looks similar to this:

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C "start_jupyter -t -A -T @tool/bin calc.ipy
nb" \
 -u anaconda-7 \
 -r none \
 -w headless

In the invoke script above, invoke_app, located in the directory /usr/bin, is called with "$@", "-t
calc", "-C start_jupyter ...", "-c filexfer", "-w captive". "$@" represents all options that the invoke
script itself received. "-t calc" tells invoke_app that the toolname is "calc". This information is
used by invoke_app to figure out which tool it is supposed to be launching and where that tool is
installed. "-C start_jupyter ..." tells invoke_app that the command to run to start the tool is
"start_jupyter". "start_jupyter has several typical arguments as shown. "-r none" tells
invoke_app that Rappture is not required. "-w headless" tells invoke_app not to start a window
manager.

Using invoke_app with GUI tools

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a non-Rappture GUI application looks similar to this:

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C calc \
 -c filexfer \
 -w captive

In the invoke script above, invoke_app, located in the directory /usr/bin, is called with "$@", "-t
calc", "-C calc", "-c filexfer", "-w captive". "$@" represents all options that the invoke script itself
received. "-t calc" tells invoke_app that the toolname is "calc". This information is used by
invoke_app to figure out which tool it is supposed to be launching and where that tool is

 8 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

installed. "-C calc" tells invoke_app that the command to run to start the tool is "calc". In this
case calc is UI program built using something other than Rappture. Possible GUI builders
include but are not limited to PyQt and MATLAB. "-c filexfer" tells invoke_app to start up the
filexfer program before starting the tool's graphical user interface. "-w captive" tells invoke_app
to use the icewm captive window manager. For non-rappture applications the icewm captive
window manager may be preferred over the ratpoison window manager if there are multiple
graphical user interface windows that could popup.

The invoke script above could be made more svelte if the we did not want to start filexfer and
we wanted to use the ratpoison window manager. After all, not all applications require files from
the user, so they don't need the filexfer program. Here's an example of the tool named calc (the
"-t calc" option), that is started by the executable named calc (the "-C calc" option), and uses the
default window manager which is ratpoison.

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C calc

Other invoke script examples

Here are a few common invoke scripts examples that demonstrate using invoke_app options.

Use the -u option to setup Octave-3.2.4 in the path before starting the tool's graphical user
interface. The -u option sources a "use" script (octave-3.2.4 in this example) from the
/apps/environ directory.

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C calc \
 -u octave-3.2.4

Use the -A option to send additional arguments to the command to be executed:

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C calc \

 9 / 10

LAUNCHING TOOLS WITH INVOKE SCRIPTS

 -A "-value 13 -value 5 -op add"

Or:

#!/bin/sh

/usr/bin/invoke_app "$@" -t calc \
 -C "calc -value 13 -value 5 -op add"

Launching a Matlab tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/usr/bin/invoke_app "$@" -t app-fermi \
 -C rappture

Launching a Python tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/usr/bin/invoke_app "$@" -t app-fermi \
 -C rappture

Launching a Java tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/usr/bin/invoke_app "$@" -t app-fermi \
 -C rappture

Powered by TCPDF (www.tcpdf.org)

 10 / 10

http://www.tcpdf.org

