
TOOL ADMINISTRATORS

Tool Administrators

The procedures for maintaining and updating tool execution environments are presented in this
section. Anaconda (Jupyter Notebook) changes require membership in the apps group.
Container changes described in the Installing Tool Dependecies section requires login access to
execution hosts and membership in the docker group. Tool Administrator responsibilities and
procedures. CMS changes described in the White list section require access to the
administrator website.

 1 / 9

TOOL ADMINISTRATORS

Installing Tool Dependencies

Occasionally additional software needs to be installed in a tool environment to support tool
execution. Please follow these instructions in the given order. Keep in mind that an
environment maybe shared by multiple tools.

Install a operating system package in the tool execution container

Tool execution containers are based on Docker images. At minimum Debian 7 (wheezy) and
Debian 10 (buster) Docker images are provided. Operating system choice is not limited to
Debian. We have used CentOS and Ubuntu images as the basis for images to meet tool
requirements. Regardless of operating system choice there is a minimum set of scripts and
configuration files that must be included to enable the middleware to manage container related
processes.

The pairing of Docker image and tool is made according to the following convention:

1. Find an image tag matching tool name and revision.
2. Find an image tag matching the tool name.
3. A default image specified in the middleware.

Multiple Docker tags may be applied to the same image thus reducing the storage requirement
for multiple images. Docker images may be modified or created using standard practices based
on Dockerfiles. If all Docker images are not made available on all execution hosts, host
requirements may be used to aid in execution host selection.

Manually install software in the 'use' infrastructure

Typically we create and run Hapi (HUBzero Apps Program Installers) scripts to download,
configure, compile, and install software in the tool execution environment. This is especially
important when multiple versions of the same software must be available to server different
tools. For example, Tool A may require R version 3.6.3 while Tool B may require R version
4.2.1. These requirements are the result of an ever evolving software landscape. "Use" is very
helpful in this case, among others, providing a way to load specific software versions as
requirements demand.

All operations for manually installing dependent software for tools must be done by the
apps user from a workspace terminal.

As the apps user clone the Hapi repo into the apps home directory:

git clone https://github.com/hubzero/hapi.git

 2 / 9

TOOL ADMINISTRATORS

In the hapi/scripts directory you will find a collection of shell scripts and csv files for software
typically installed for use in tool environments. If a script exists for software that you need, just
run it! Feel free to add new Hapi scripts of your creation to the GitHub repo by submitting pull
requests. We occasionally add scripts as well.

If, after doing a git update on your repository, a script doesn't exist for the software you need,
copy an existing Hapi script and modify it. Hapi scripts make your life much easier by
downloading, configuring, compiling, installing and even adding the required 'use' environ.d file
to the appropriate location.

All tool dependencies are installed by the apps user in an operating system specific directory
such as /apps/share64/debian7 and should be owned by the apps user and group. All files
must be readable by everyone and all directories must be searchable by everyone. No files or
directories should be writable by everyone (seriously don't do this)

* For a full manual run "man use" from a tool session terminal.

USE(1) User Commands USE(1)

NAME
 use, unuse - adjust the shell environment

SYNOPSIS
 use [options]... [ENVIRONMENT]
 unuse [options]... [ENVIRONMENT]

DESCRIPTION
 The use command incorporates the specified ENVIRONMENT to the current
 shell. The unuse command removes it. It optionally records the selec-
 tion persistently so that subsequent shells will use the ENVIRONMENT.
 These commands are independent of the shell being run.

 An ENVIRONMENT is specified by a configuration file of the same name as
 found in one of the configuration directories. The ENVIRON_CONFIG_DIRS
 environment variable specifies a list of directories in which to search
 for configurations. Each configured ENVIRONMENT specifies a environ-
 ment variables to set or prepend, shell variables to set, and shell
 aliases to set.

 Some environments are configured to conflict with others. The use com-
 mand will ask if conflicting ENVIRONMENT should be replaced.

 With no arguments, the use and unuse commands will print a synopsys of
 options and lists all available environments.

 3 / 9

TOOL ADMINISTRATORS

 -h print available help for a named ENVIRONMENT.

 -e environment only. Do not ask about preserving the selection.

 -p modify the environment and preserve selection. Do not ask about
 preserving the selection.

 -k keep any conflicting environment. Do not ask about replacing
 it.

 -r replace any conflicting environment without asking.

 -x quietly ignore the command if the named ENVIRONMENT cannot be
 found.

MAKING IT WORK
 The following command will describe an environment named xyz:

 use -h xyz

 The following command will incorporate the xyz environment preserving
 the environment for future shell invocations. It will also not over-
 ride any conflicting environments:

 use -p -k xyz

 The following command will remove the xyz environment but retain its
 use for future sessions:

 unuse -e xyz

INTERNAL OPERATION
 use and unuse are actually implemented as shell functions (or as
 aliases in the case of csh derivatives). The functions pass their
 arguments to the /etc/environ script which determines the commands that
 the shell should execute to satisfy the new environment configuration.
 The script prints these commands, the shell function receives them and
 evals them.

ENVIRONMENT CONFIGURATION FILES
 Configuration files are interpreted shell scripts. Several predefined
 functions are available to make the the process automatic.

 alias NAME "Replacement"
 Set a command alias in the shell.

 4 / 9

TOOL ADMINISTRATORS

 conflict VARNAME
 Define an environment variable to indicate that a type of an
 ENVIRONMENT is in use. All conflicting ENVIRONMENT configura-
 tions should specify the same conflict. An ENVIRONMENT configu-
 ration may specify multiple conflicts.

 desc "A short description..."
 A short description of the ENVIRONMENT.

 help "A lengthy description..."
 A long description of the ENVIRONMENT and how to use it. This
 description will be formatted when printed.

 prepend VARNAME ADDITION
 Prepend ADDITION to the environment variable VARNAME separated
 with a colon.

 setenv VARNAME REPLACEMENT
 Set or replace the environment variable VARNAME with REPLACE-
 MENT.

 shellset VARNAME REPLACEMENT
 Set or replace the shell variable VARNAME with REPLACEMENT.

 5 / 9

TOOL ADMINISTRATORS

Jupyter Notebooks

Adding additional packages to Jupyter Notebooks

Google the desired package (python, R packages, not OS packages) and review the installation
instructions. They might recommend a different conda repository than the default.
Be careful if conda says it wants to downgrade packages. If it is a minor downgrade, it is
probably OK. Do not proceed if many packages must be downgraded or critical packages are
to be downgraded. Remember that changes to the Ananconda environment will affect all tools
using the environment and a downgrade could cause tools not to function (if a feature is no
longer available, for example).

Start a workspace tool. If your HUB supports multiple operating system (vendor or
version) based tool containers choose the workspace tool for the appropriate container.
As an alternative, start the Jupyter Notebook tool based on the Anaconda environment
that you want to modify and start a new terminal.
From the open terminal switch to the apps user (your account must be a member of the
apps group).

sudo su - apps

Load the Anaconda environment that you wish to modify (there may be multiple
Anaconda environments available. The list of Anaconda environments can be listed
with the command

use |& grep anaconda

Execute the command "use", choosing the appropriate Anaconda (X represents the
particular version choice) environment.

use -e -r anaconda-X

Install the desired package via conda or mamba if it is installed. mamba is typically
much more efficient and provides more useful information should it fail. Another option
is to use pip. Extra care must be taken when mixing conda and pip package
installations in the same environment. Typical installation command like

conda install -c conda-forge -c defaults <pkgname>

pip install -U --upgrade-strategy only-if-needed <pkgname>

 6 / 9

TOOL ADMINISTRATORS

The installation may take a few minutes
Important! Fix any world writable files by doing:

chmod -R o-w /apps/share64/<OS>/anaconda/anaconda-X

Creating a separate anaconda environment.

In some circumstances it is beneficial to spawn a new named environment from the standard
base environment. The named environments are referred to as kernels in Jupyter notebooks.
Once a Jupyter notebook is running the developer or user has the opportunity to change to a
different kernel. The kernel used to run the notebook is embedded within the notebook
metadata therefore only has to be changed once. This works well for developers and means
the administrator does not have to create a Jupyter Notebook tool for each kernel.

Set base Anaconda environment

use -e -r anaconda-X

Create new named environment

conda create -n <name>

Activate named environment

source activate <name>

Do package installation as before

conda install -c conda-forge -c defaults <pkgname>

pip install -U --upgrade-strategy only-if-needed <pkgname>

Register named environment as kernel in base environment

python -m ipykernel install --sys-
prefix --name <name> --display-name "Python3 (<name>)"

python -m ipykernel install --prefix /apps/share64/<OS>/ana
conda/anaconda-X --name <name> --display-

 7 / 9

TOOL ADMINISTRATORS

name "Python3 (<name>)"

Deactivate named environment

conda deactivate

References:

conda user guide

Ipython kernel instalation

Updating hublib

The HUBzero utility library should be installed in every base Anaconda environment and in each
named environment as well. The hublib package is available only through pip.

Set Anaconda base environment

use -e -r anaconda-X

Install hublib

pip install -U hublib

 8 / 9

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments

TOOL ADMINISTRATORS

White list of directories through the CMS

The parameter passing tool execution feature provides a mechanism for passing file names to a
tool through the URL used to launch the tool session. As a security measure the passed
parameters must conform to a simple schema and only files in white listed directories may be
referenced. The passed parameters are validated by the middleware. The files passed as
parameters are restricted to the directories listed in the Directory Parameter Whitelist. If
specified files lie outside of the white listed locations the the tool launch will fail.

Any super-user can whitelist a directory via the /administrator interface. Follow these steps to
complete this request:

1. Navigate to the /administrator interface and login
2. Hover over Components then click on Tools
3. Click the Options button and under Directory Parameter Whitelist, modify the comma

separated list of directories. At minimum the list should include /home.
4. Click Save & Close
5. Make sure that you complete this task on all the requested systems (i.e. production,

stage, dev, qa, etc.)

Powered by TCPDF (www.tcpdf.org)

 9 / 9

http://www.tcpdf.org

