
JUPYTER NOTEBOOKS

Jupyter Notebooks

Adding additional packages to Jupyter Notebooks

Google the desired package (python, R packages, not OS packages) and review the installation
instructions. They might recommend a different conda repository than the default.
Be careful if conda says it wants to downgrade packages. If it is a minor downgrade, it is
probably OK. Do not proceed if many packages must be downgraded or critical packages are
to be downgraded. Remember that changes to the Ananconda environment will affect all tools
using the environment and a downgrade could cause tools not to function (if a feature is no
longer available, for example).

Start a workspace tool. If your HUB supports multiple operating system (vendor or
version) based tool containers choose the workspace tool for the appropriate container.
As an alternative, start the Jupyter Notebook tool based on the Anaconda environment
that you want to modify and start a new terminal.
From the open terminal switch to the apps user (your account must be a member of the
apps group).

sudo su - apps

Load the Anaconda environment that you wish to modify (there may be multiple
Anaconda environments available. The list of Anaconda environments can be listed
with the command

use |& grep anaconda

Execute the command "use", choosing the appropriate Anaconda (X represents the
particular version choice) environment.

use -e -r anaconda-X

Install the desired package via conda or mamba if it is installed. mamba is typically
much more efficient and provides more useful information should it fail. Another option
is to use pip. Extra care must be taken when mixing conda and pip package
installations in the same environment. Typical installation command like

conda install -c conda-forge -c defaults <pkgname>

pip install -U --upgrade-strategy only-if-needed <pkgname>

 1 / 3

JUPYTER NOTEBOOKS

The installation may take a few minutes
Important! Fix any world writable files by doing:

chmod -R o-w /apps/share64/<OS>/anaconda/anaconda-X

Creating a separate anaconda environment.

In some circumstances it is beneficial to spawn a new named environment from the standard
base environment. The named environments are referred to as kernels in Jupyter notebooks.
Once a Jupyter notebook is running the developer or user has the opportunity to change to a
different kernel. The kernel used to run the notebook is embedded within the notebook
metadata therefore only has to be changed once. This works well for developers and means
the administrator does not have to create a Jupyter Notebook tool for each kernel.

Set base Anaconda environment

use -e -r anaconda-X

Create new named environment

conda create -n <name>

Activate named environment

source activate <name>

Do package installation as before

conda install -c conda-forge -c defaults <pkgname>

pip install -U --upgrade-strategy only-if-needed <pkgname>

Register named environment as kernel in base environment

python -m ipykernel install --sys-
prefix --name <name> --display-name "Python3 (<name>)"

python -m ipykernel install --prefix /apps/share64/<OS>/ana
conda/anaconda-X --name <name> --display-

 2 / 3

JUPYTER NOTEBOOKS

name "Python3 (<name>)"

Deactivate named environment

conda deactivate

References:

conda user guide

Ipython kernel instalation

Updating hublib

The HUBzero utility library should be installed in every base Anaconda environment and in each
named environment as well. The hublib package is available only through pip.

Set Anaconda base environment

use -e -r anaconda-X

Install hublib

pip install -U hublib

Powered by TCPDF (www.tcpdf.org)

 3 / 3

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments
http://www.tcpdf.org

