
APPLICATION STRUCTURE

Application Structure

The Root Directory

The default application structure of a hub is intended to provide a clean separation of a hub's
content, configuration, extensions, and everything else that makes a hub unique from the core
framework.

/hubzero
.. /administrator
.. /api
.. /app
.. /core
.. muse
.. index.php
.. htaccess.txt
.. robots.txt

The App Directory

The brain, or uniqueness, of a hub lives in the app directory. All (non-core) extensions installed,
templates, cache files, uploaded content, and configurations will reside in this directory.

When developing extensions for a hub, the constant PATH_APP should be used for any paths
relating to directories or files within the app directory. This is shorter and allows for the potential
renaming of the directory while keeping the hub functioning smoothly.

The app directory contains a number of sub-directories used by the hub for managing
extensions and files. Most of these directories will initially be empty.

bootstrap
The bootstrap folder contains a few files that bootstrap the framework and configure
available services.

cache
The cache directory is used for storing generated content. Nothing within is vital but,
rather, is used for dramatically improving site performance. The directory is further sub-
divided by application type: admin, site, api, cli.

components
The components directory is where 3rd-party and custom made components will reside.

config
The config directory, as the name implies, contains all of the hub's configuration files.

logs

 1 / 7

/documentation/210/webdevs/foundation/constants

APPLICATION STRUCTURE

modules
plugins
templates
tmp

The Core Directory

If the app directory is the brain, the core directory is the skeleton, muscles, and heart of a hub,
containing the framework and numerous pre-installed extensions.

As with the app directory, a global constant of PATH_CORE representing the file path is
available.

Admin & API

The administrator and api directories are carry-overs from prior versions of the hub framework
and marked for deprecation in a future version fo the framework. Do not place any files or
folders within these two directories.

administrator
The Administrator application, also known as the Back-end, Admin Panel or Control
Panel, is the interface where administrators and other site officials with appropriate
privileges can manipulate the appearance, enable/disable installed extensions, or
manage users and content.

api
Every hub comes with an API for accessing data from the various components and
extensions in a light-weight, speedy manner. This directory contains the entry point to
the API and can be accessed by visiting http://{yourhub}.org/api

Request Lifecycle

The entry point for all requests to an application is the index.php file. For /administrator and /api,
this is the only file within those directories! All requests are directed to this file by the web server
configuration. The index.php file doesn't contain much code. Rather, it is simply a starting point
for loading the rest of the framework.

ROOT/administrator/index.php

 2 / 7

APPLICATION STRUCTURE

ROOT/api/index.php
ROOT/index.php

The file itself is rather short and simple. Within index.php, a number of constants and paths are
established, the file autoloader is included, and the core application bootstrap, which initializes
the application / service container, is included.

The application serves as the central location that all requests flow through. Part of the
instantiation process includes registering an array of bootstrappers that will be run before the
request is executed. These bootstrappers configure error handling, logging, detect the
application environment, and perform other tasks that need to be done before the request is
actually handled.

All requests must then pass through a list of middleware, each of which processes the request
and builds a response.

Entry Point

For /administrator, /api, and /, all incoming calls are routed to the index.php file within those
directories.

ROOT/administrator/index.php
ROOT/api/index.php
ROOT/index.php

The file itself is rather short and simple. Within index.php, a number of constants and paths are
established, the file autoloader in included, and the core application bootstrap which initializes
the application is included. Finally, run is called on the application.

Incoming call
 -> index.php
 // Define constants for paths to the ROOT, /app, and /core dir
ectories
 -> include 'core/bootstrap/paths.php'

 // Include the file autoloader
 -> include 'core/bootstrap/autoload.php'

 // Include the application

 3 / 7

APPLICATION STRUCTURE

 -> include 'core/bootstrap/start.php'

 // Run the application
 -> $app->run()

As noted, the initialization of the application, registering of services, and a number of other
setup processes are contained within core/bootstrap/start.php. Next, we'll take a closer look at
what happens in that file.

Application Initialization (core/bootstrap/start.php)

First and foremost, we set the strictest error reporting options, and also turn off PHP's error
reporting, since all errors will be handled by the framework and we don't want any output
leaking back to the user.

error_reporting(-1);
ini_set('display_errors', 0);

Next, we create a new application instance which serves as the "glue" for all the parts of a hub,
and is the IoC container for the system binding all of the various parts.

$app = new HubzeroBaseApplication;

From there we try to automatically detect the client type being called (administrator, api, site, cli,
etc). This will determine the set of services, facades, etc. that get loaded further on in the
application lifecycle. Note that we detect the client and assign it to a $client variable, which we'll
use later.

$client = $app->detectClient(array(

 'administrator' => 'administrator',
 'api' => 'api',
 'cli' => 'cli',
 'install' => 'install',
 'files' => 'files',

))->name;

 4 / 7

APPLICATION STRUCTURE

The next step may look strange, but we actually want to bind the app into itself in case we need
to Facade test an application. This will allow us to resolve the "app" key out of this container for
the app's facade.

$app['app'] = $app;

Next up, the app's configuration is loaded. The configuration repository is used to lazily load in
the options for this application from the configuration files (/app/config/*). The files are easily
separated by their concerns so they do not become really crowded.

/* Note that we pass in the client type. This is because configuration
 options can potentially be overridden per client type. */
$app['config'] = new HubzeroConfigRepository($client);

// [!] Some legacy support here for old Joomla-defined constants
if (!defined('JDEBUG')) define('JDEBUG', $app['config']->get('debu
g'));
if (!defined('JPROFILE')) define('JPROFILE', $app['config']->get('debu
g') || $app['config']->get('profile'));

Register all of the core pieces of the framework including session, caching, and more. First,
we'll load the core bootstrap list of services and then we'll give the app a chance to modify that
list.

// Bootstrap path: core/bootstrap/client/services.php
$providers = PATH_CORE . DS . 'bootstrap' . DS . $client . DS . 'serv
ices.php';
$services = file_exists($providers) ? require $providers : array();

// Alternate bootstrap path following PSR-4 conventions: core/bootstra
p/Client/services.php
$providers = PATH_CORE . DS . 'bootstrap' . DS . ucfirst($client) . D
S . 'services.php';
$services = file_exists($providers) ? array_merge($services, require
$providers) : $services;

 5 / 7

APPLICATION STRUCTURE

// App bootstrap path: app/bootstrap/client/services.php
$providers = PATH_APP . DS . 'bootstrap' . DS . $client . DS . 'servi
ces.php';
$services = file_exists($providers) ? array_merge($services, require
$providers) : $services;

foreach ($services as $service)
{
 $app->register($service);
}

The alias loader is responsible for lazy loading the class aliases setup for the application. First,
we'll load the core bootstrap list of aliases and then, as with services, we'll give the app a
chance to modify that list.

// Bootstrap path: core/bootstrap/client/aliases.php
$facades = PATH_CORE . DS . 'bootstrap' . DS . $client . DS . 'aliase
s.php';
$aliases = file_exists($facades) ? require $facades : array();

// Alternate bootstrap path following PSR-4 conventions: core/bootstra
p/Client/aliases.php
$facades = PATH_CORE . DS . 'bootstrap' . DS . ucfirst($client) . DS
. 'aliases.php';
$aliases = file_exists($facades) ? array_merge($aliases, require $faca
des) : $aliases;

// App bootstrap path: app/bootstrap/client/aliases.php
$facades = PATH_APP . DS . 'bootstrap' . DS . $client . DS . 'aliases
.php';
$aliases = file_exists($facades) ? array_merge($aliases, require $faca
des) : $aliases;

$app->registerFacades($aliases);

Finally, this script returns the application instance. The instance is given to the calling script so
we can separate the building of the instances from the actual running of the application and
sending responses.

return $app;

 6 / 7

APPLICATION STRUCTURE

Powered by TCPDF (www.tcpdf.org)

 7 / 7

http://www.tcpdf.org

