
COMPONENTS

Components

Overview

The largest and most complex of the extension types, a component is in fact a separate
application. You can think of a component as something that has its own functionality, its own
database tables and its own presentation. So if you install a component, you add an application
to your website. Examples of components are a forum, a blog, a community system, a photo
gallery, etc. You could think of all of these as being a separate application. Everyone of these
would make perfect sense as a stand-alone system.

Throughout these articles, we will be using {ComponentName} to represent the name of a
component that is variable, meaning the actual component name is chosen by the developer.
Notice also that case is important. {componentname} will refer to the lowercase version of
{ComponentName}, eg. "CamelCasedController" -> "camelcasedcontroller". Similarly,
{ViewName} and {viewname}, {ModelName} and {modelname}, {ControllerName} and
{controllername}.

Examples

In the com_drwho example component, we demonstrate working with an MVC structure, basic
usage of the database ORM, and more. The admin and site examples show how to output a
listing (with pagination), a form for entering new items, and saving to the database.

Other examples included are using multiple controllers, using models, handling errors, adding
some security, and pushing assets (e.g., CSS) to the document.

Example usage of the API is also included.

Download: Doctor Who component

 1 / 31

/app/site/documentation/2-0-0/examples/com_drwho.zip

COMPONENTS

Structure

Naming Conventions

The model, view and controller files use classes from the framework, HubzeroBaseModel,
HubzeroComponentView and HubzeroComponentSiteController, respectively. Each class is
then extended with a new class specific to the component.

Administrative controllers extend HubzeroComponentAdminController which in turn extends
HubzeroComponentSiteController and adds a few extra methods frequently used throughout
the administrative portion of the site.

All components must be under the Components namespace and follow PSR-0 naming scheme
with one exception: files and folders may be lowercase even when their class names are not.

Directories & Files

Components follow the Model-View-Controller (MVC) design pattern. This pattern separates the
data gathering (Model), presentation (View) and user interaction (Controller) activities of a
module. Such separation allows for expanding or revising properties and methods of one
section without requiring additional changes to the other sections.

In its barest state, no database entry or other setup is required to "install" a component. Simply
placing the component into the /components directory will make it available for use. However, if
a component requires the installation of database tables or configuration (detailed in the
config.xml file), then an administrator must install the component using one of the installation
options in the administrative back-end.

Note: Components not installed via one of the installation options or without a database entry in
the #__extensions table will not appear in the administrative list of available components.

To illustrate the typical component directory structures and files:

/app
.. /components
.. .. /com_example
.. /admin
.. /api
.. /helpers
.. /models
.. /site
.. /assets
.. /css
.. /js

 2 / 31

COMPONENTS

.. /img

.. /controllers

.. example.php

.. /views

.. /example

.. /tmpl

.. display.php

.. display.xml

.. example.php

.. router.php

Files are contained within directories titled "com_example". Some directories and files are
optional but, for this example, we've included a more common setup.

All client-specific files and sub-directories are split between the respective client directories,
such as admin and site. Since controllers and views are specific to a client, they reside within
those client directories. Shared files, typically models and helpers, are within directories at the
same level as the client folders.

Directory & File Explanation

/com_{componentname}/{client}/{componentname}.php
This is the component's entry point for the admin and site clients. API and Cli (console)
are special cases and don't require this file.

/com_{componentname}/{client}/views

This folder holds the different views for the component.

/com_{componentname}/views/{viewname}
This folder holds the files for the view {ViewName}.

/com_{componentname}/views/{viewname}/tmpl

This folder holds the template files for the view {ViewName}.

/site/views/{viewname}/tmpl/default.php
This is the default template for the view {ViewName}.

/com_{componentname}/models

This folder holds additional models, if needed by the application.

 3 / 31

COMPONENTS

/com_{componentname}/models/{modelname}.php
This file holds the model class {ComponentName}Model{ModelName}. This
class must extend the base class "HubzeroBaseModel". Note that the view
named {ViewName} will by default load a model called {ViewName} if it exists.
Most models are named after the view they are intended to be used with.

/com_{componentname}/{client}/controllers

This folder holds additional controllers, if needed by the application.

/com_{componentname}/{client}/controllers/{controllername}.php
This file holds the controller class {ComponentName}Controller{ControllerName}.
This class must extend the base class HubzeroComponentsSiteController.

Entry Point

The CMS is always accessed through a single point of entry: index.php for the Site Application
or administrator/index.php for the Administrator Application. The application will then load the
required component, based on the value of 'option' in the URL or in the POST data. For our
component, the URL would be:

For search engine friendly URLs:
/hello

For non-SEF URLs:
/index.php?option=com_hello

This will load our main file, which can be seen as the single point of entry for our component:
components/com_hello/hello.php.

Implementation

<?php
// Define the namespace
// Components{ComponentName}{ClientName};
namespace ComponentsHelloSite;

// Get the requested controller
$controllerName = Request::getCmd('controller', Request::getCmd('view'
, 'one'));

// Ensure the controller exists

 4 / 31

COMPONENTS

if (!file_exists(__DIR__ . DS . 'controllers' . DS . $controllerName .
 '.php'))
{
 App::abort(404, Lang::txt('Controller not found'));
}
require_once(__DIR__ . DS . 'controllers' . DS . $controllerName . '.p
hp');
$controllerName = __NAMESPACE__ . '\Controllers\' . ucfirst(strtolower
($controllerName));

// Instantiate controller
$controller = new $controllerName();
// Execute whatever task(s)
$controller->execute();

The first statement is defining the namespace. All component namespaces must be under the
Components namespace.

__DIR__ is a pre-defined PHP constant that evaluates to the absolute path to the current
directory, in our case /webroot/app/components/com_hello/site.

DS is the directory separator of your system: either '/' or ''. This is automatically set by the
framework so the developer doesn't have to worry about developing different versions for
different server OSs. The DS constant should always be used when referring to files on the local
server.

First we look for a requested controller name. There is a default set in case none has been
passed or if the requested controller is not found. With the controller name, we build the class
name for the controller following the standard namespaced camel-cased pattern of
Components{Component name}{Client name}Controllers{Controller name}

After the controller is created, we instruct the controller to execute the task, as defined in the
URL: index.php?option=com_hello&task=sometask. If no task is set, the default task 'display'
will be assumed. When display is used, the 'view' variable will decide what will be displayed.
Other common tasks are save, edit, new...

The main entry point (hello.php) essentially passes control to the controller, which handles
performing the task that was specified in the request.

Note that we don't use a closing PHP tag in this file: ?>. The reason for this is that we will not
have any unwanted whitespace in the output code. This is default practice and will be used for
all php-only files.

 5 / 31

COMPONENTS

Controllers

Overview

The controller is responsible for responding to user actions. In the case of a web application, a
user action is (generally) a page request. The controller will determine what request is being
made by the user and respond appropriately by triggering the model to manipulate the data
appropriately and passing the model into the view. The controller does not display the data in
the model, it only triggers methods in the model which modify the data, and then pass the model
into the view which displays the data.

Site Controller

<?php
namespace ComponentsHelloSiteControllers;

use HubzeroComponentSiteController;

class One extends SiteController
{
 public function displayTask()
 {
 // Pass the view any data it may need
 $this->view->greeting = 'Hello, World!';

 // Set any errors
 foreach ($this->getErrors() as $error)
 {
 $view->setError($error);
 }

 // Output the HTML
 $this->view->display();
 }
}

The first, and most important part to note is that we're extending
HubzeroComponentSiteController which brings several tools and some auto-setup for us.

Note: HubzeroComponentSiteController extends HubzeroBaseObject, so all its methods and
properties are available.

 6 / 31

COMPONENTS

In the execute() method, the list of available tasks is built from only methods that are 1) public
and 2) end in "Task". When calling a task, the "Task" suffix should be left off. For example:

// This route
Route::url('index.php?option=com_example&task=other');

// Refers to
....
public function otherTask()
{
 ...
}
....

If no task is supplied, the controller will default to a task of "display". The default task can be set
in the controller:

class One extends SiteController
{
 public function execute()
 {
 // Set the default task
 $this->registerTask('__default', 'mydefault');

 // Set the method to execute for other tasks
 // The following can be called by task=delete and will execute the r
emoveTask method
 $this->registerTask('delete', 'remove'); // (task, method name);

 parent::execute();
 }
 ...
}

Each controller extending HubzeroComponentSiteController will have the following properties
available:

_option - String, component name (e.g., com_example)
_controller - String, controller name
view - Object (View)

 7 / 31

COMPONENTS

config - Object (Registry), component config

<?php

class One extends SiteController
{
 public function displayTask()
 {
 $this->view->userName = User::get('name');
 $this->view->display();
 }
}

Auto-generation of views

The HubzeroComponentSiteController automatically instantiates a new
HubzeroComponentView object for each task and assigns the component ($option) and
controller ($controller) names as properties for use in your view. Controller names map to view
directory and task names directly map to view names.

 /{component}
 /site
 /views
 /one (controller name)
 /tmpl
 /display.php
 /remove.php

Example usage within a view:

<p>This is component <?php echo $this->option; ?> using controller: <?
php echo $this->controller; ?></p>

Changing view layout

As mentioned above, the view object is auto-generated with the same layout as the current
$task. There are times, however, when you may want to use a different layout or are executing
a task after directing through from a previous task (example: saveTask encountering an error

 8 / 31

COMPONENTS

and falling through to the editTask to display the edit form with error message). The layout can
easily be switched with the setLayout method.

 /{component}
 /views
 /one (controller name)
 /tmpl
 /display.php
 /world.php

class One extends SiteController
{
 public function displayTask()
 {
 // Set the layout to 'world.php'
 $this->view->setLayout('world');

 // Output the HTML
 $this->view->display();
 }
}

Any assigned data or vars to the view will not be effected.

Admin Controller

Administrator component controls are built and function the same as the Front-end (site)
controllers with one key difference: they extends HubzeroComponentAdminController.

<?php

class One extends AdminController
{
 ...
}

 9 / 31

COMPONENTS

The primary difference between SiteController and AdminController is the pre-defining of a few
tasks commonly used in administrator components.

API Controller

API controllers extend HubzeroComponentApiController. Functionally, API controllers are very
similar to site and admin controllers in that defining executable tasks is done by creating public
methods with a "Task" suffix. They differ, however, in two key ways:

1) Controllers follow a naming convention unique to the API. [TODO: fill in]

2) The API has no concept of views and thus no View object to render data. Instead, data is
sent back to the application via the send method which, in turn, prepares the response before
delivering to the user.

<?php
namespace ComponentsExampleApiControllers;

use HubzeroComponentApiController;

class Greetings extend ApiController
{
 public function listTask()
 {
 $model = new Archive();
 $data = $model->all();

 $this->send($data);
 }
}

 10 / 31

COMPONENTS

Helpers

Overview

A helper class is a class filled with static methods and is usually used to isolate a "useful"
algorithm. They are used to assist in providing some functionality, though that functionality isn't
the main goal of the application. They're also used to reduce the amount of redundancy in your
code.

Implementation

Helper classes are stored in the helpers sub-directory of your component folder. As with all
other classes, naming follows the PSR-0 convention and are within the Components
namespace. Therefore, our helper class is called ComponentsHelloHelpersOutput.

Here's our com_hello/helpers/output.php helper class:

<?php

namespace ComponentsHelloHelpers;

/**
 * Hello World Component Helper
 */
class Output
{
 /**
 * Method to make all text upper case
 *
 * @param string $txt
 * @return string
 */
 public static function shout($txt='')
 {
 return strToUpper($txt).'!';
 }
}

We have one method in this class that takes all strings passed to it and returns them uppercase
with an exclamation point attached to the end. To use this helper, we do the following:

 11 / 31

COMPONENTS

<?php

namespace ComponentsHelloSiteControllers;

use HubzeroComponentSiteController;
use ComponentsHelloHelpersOutput;

class Greetings extends SiteController
{
 public function displayTask()
 {
 include_once(dirname(dirname(__DIR__)) . DS . 'helpers' . DS . 'outp
ut.php');

 $greeting = Output::shout("Hello World");

 $this->view
 ->set('greeting', $greeting)
 ->display();
 }
}

 12 / 31

COMPONENTS

Models

Overview

The concept of model gets its name because this class is intended to represent (or 'model')
some entity.

Creating A Model

All HUBzero models extend the HubzeroBaseModel class. The naming convention for models in
the framework is that the class name starts with the name of the component, followed by
'model', followed by the model name. Therefore, our model class is called
ComponentsHelloModelsHello.

<?php
namespace ComponentsHelloModels;

use HubzeroBaseModel;

/**
 * Hello Model
 */
class Hello extends Model
{
 /**
 * Gets the greeting
 *
 * @return string The greeting to be displayed to the user
 */
 public function getGreeting()
 {
 return 'Hello, World!';
 }
}

You will notice a lack of include, require, or import calls. Hubzero classes are autoloaded and
map to files located in the /core/libraries/Hubzero directory. See more on naming conventions.

 13 / 31

/documentation/2.0.0/webdevs/conventions/phpnamingconventions

COMPONENTS

Using A Model

Here's an example of using a model with our Hello component (com_hello).

<?php
namespace ComponentsHelloSiteControllers;

use HubzeroComponentSiteController;
use ComponentsHelloModelsHello;

/**
 * Controller for the HelloWorld Component
 */
class Greetings extends SiteController
{
 public function display()
 {
 $model = new Hello();
 $greeting = $model->getGreeting();

 $this->set('greeting', $greeting)
 ->display();
 }
}

 14 / 31

COMPONENTS

Languages

Setup

Language files are setup as key/value pairs. A key is used within the component's code and the
translator retrieves the associated string for the given language. The following code is an extract
from a typical component language file.

; Module - Hellow World (en-US)
COM_HELLOWORLD_LABEL_USER_COUNT = "User Count"
COM_HELLOWORLD_DESC_USER_COUNT = "The number of users to display"
COM_HELLOWORLD_RANDOM_USERS = "Random Users for Hello World"
COM_HELLOWORLD_USER_LABEL = "%s is a randomly selected user"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of COM_{ComponentName}_{Text} for naming. Adhering to
this naming convention is not required but is strongly recommended as it can help avoid
potential translation collisions.

See the Languages overview for details.

Translating Text

Below is an example of accessing the translate helper:

<p><?php echo Lang::txt("COM_EXAMPLE_MY_LINE"); ?></p>

Lang::txt is used for both simple strings and strings that require dynamic data passed to them
for variable replacement.

<p><?php echo Lang::txt('Hello %s. How are you?', $name); ?></p>

Strings or keys not found in the current translation file will output as is.

 15 / 31

/documentation/2.0.0/webdevs/basics/languages

COMPONENTS

See the Languages overview for details.

 16 / 31

/documentation/2.0.0/webdevs/basics/languages

COMPONENTS

Views

Directory Structures & Files

Views are written in PHP and HTML and have a .php file extension. View scripts are placed in
/com_{component name}/{client}/views/, where they are further categorized by the
/{viewname}/tmpl. Within these subdirectories, you will then find and create view scripts that
correspond to each controller action exposed; in the default case, we have the view script
display.php.

/app
 /components
 /com_{componentname}
 /{client [site, admin]}
 /views
 /{viewname}
 /tmpl
 default.php

Overriding module and component presentation in templates is further explained in the
Templates: Overrides section.

Creating A View

The task of the view is very simple: It retrieves the data to be displayed and pushes it into the
template.

// Instantiate a new view
$view = new HubzeroComponentView(array(
 'name' => $this->_controller,
 'layout' => 'foo'
));

// Assign data to the view
$view->greetings = 'Hello';

// Echo out the results
$view->display();

 17 / 31

/documentation/2.0.0/webdevs/templates.overrides

COMPONENTS

In the above example, the view constructor is passed an array of options. The two most
important options are listed: name, which is the folder to look for the view file in and will typically
correspond to the current controller's name, and layout, which is the specific view file to load. If
no layout is specified, the layout is typically auto-assigned to the current task name. So, if the
controller in the example code is one, the directory structure would look as follow:

/com_example
 /views
 /one
 /tmpl
 /foo.php

Method Chaining

All Hubzero view objects support method chaining for brevity and ease of use.

// Instantiate a new view
$view = new HubzeroComponentView(array(
 'name' => $this->_controller,
 'layout' => 'foo'
));

$view->set('greetings', 'Hello')
 ->setLayout('bar')
 ->display();

 18 / 31

COMPONENTS

Assets

Overview

Frequently, components will make use of their styles, images, and scripts to further enhance the
interface and user experience. There are a number of helpers to make adding CSS and
Javascript to the document a quick and easy process.

Directory Structure & Files

Assets are stored in the same directory as the entry point, views, and controllers for each client
type of a component. This means, for example, the administrative side and front-end of a
component may make use of completely different assets.

While there are no hard rules on the placement and organization of the files, it is highly
recommended to follow the structure detailed below as it helps keep both small and large
projects clean, organized, and allows for several helper methods (detailed in the "Helpers"
section) to function, eliminating the tedious need for path building and file existence checking
before attaching to the document.

All assets are stored within an assets folder, which is further sub-divided by asset type. The
most common types being js (javascript), css (cascading stylesheets), and img (images) but
may also contain any other asset such as fonts, less, and so on.

/app
.. /components
.. .. /{ComponentName}
.. /{ClientName}
.. /assets
.. /css
.. /img
.. /js

Helpers

The HubzeroComponentSiteController and HubzeroComponentView classes bring with them
some useful methods for pushing StyleSheets and JavaScript assets to the document and
building paths to images. These methods can be called from within a controller or a component
view.

Cascading Stylesheets

 19 / 31

COMPONENTS

The css() method provides a quick and convenient way to attach stylesheets. It accepts two
arguments:

1. The name of the stylesheet to be pushed to the document (file extension is optional). If
no name is provided, the name of the component (without the com_ prefix) will be used.
For instance, if called within a view of the members component com_members, the
system will look for a stylesheet named members.css.

2. The name of the extension to look for the stylesheet. This accepts either module,
component or plugin name and will follow the same naming conventions used for
extension directories (e.g. "com_tags", "mod_login", etc). Passing an extension name of
"system" will retrieve assets from the core system assets (/core/assets).

For the defined stylesheet to be found, the assets must be organized as described in the
"Directory Structure & Files" section.

Method chaining is also allowed.

<?php
// Push a stylesheet to the document
$this->css()
 ->css('another');
?>
... view HTML ...

Javascript

Similarly, a js() method is available for pushing javascript assets to the document. The
arguments accepted are the same as the css() method described above.

<?php
// Push some javascript to the document
$this->js()
 ->js('another');
?>
... view HTML ...

Images

Finally, a img() method is available for building paths to images within the component's assets
directory. Unlike the css() and js() methods, this helper does not add anything to the global
document object and, instead, simply returns an absolute file path.

 20 / 31

COMPONENTS

Given the following directory structure:

/app
.. /components
.. .. /{ComponentName}
.. /{ClientName}
.. /assets
.. /img
.. picture.png

From a component view:

<!-- Generate the path to the image -->
<img src="<?php echo $this->img('picture.png'); ?>" alt="My picture" /
>

 21 / 31

COMPONENTS

Routing

Overview

All components can be accessed through a query string by using the option parameter which
will equate to the name of the component. For example, to access the "Blog" component, you
could type http://yourhub.org/index.php?option=com_blog.

When SEF URLs are being employed, the first portion after the site name will almost always be
the name of a component. For the URL http://yourhub.org/blog, the first portion after the slash
translates to the component com_blog. If a matching component cannot be found, routing will
attempt to match against an article section, category, and/or page alias.

While not required, most components will have more detailed routing instructions that allow SEF
URLs to be made from and converted back into query strings that pass necessary data to the
component. This is done by the inclusion of a file called router.php.

The Router

Every router.php file has a class with two methods: build() which takes a query string and turns
it into a SEF URL and parse() which deconstructs a SEF URL back into a query string to be
passed to the component.

<?php
namespace ComponentsExampleSite;

use HubzeroComponentRouterBase;

class Router extends Base
{
 public function build(&$query)
 {
 $segments = array();

 if (!empty($query['task']))
 {
 $segments[] = $query['task'];
 unset($query['task']);
 }
 if (!empty($query['id']))
 {
 $segments[] = $query['id'];
 unset($query['id']);
 }

 22 / 31

COMPONENTS

 if (!empty($query['format']))
 {
 $segments[] = $query['format'];
 unset($query['format']);
 }

 return $segments;
 }

 public function parse($segments)
 {
 $vars = array();

 if (empty($segments))
 {
 return $vars;
 }
 if (isset($segments[0]))
 {
 $vars['task'] = $segments[0];
 }
 if (isset($segments[1]))
 {
 $vars['id'] = $segments[1];
 }
 if (isset($segments[2]))
 {
 $vars['format'] = $segments[2];
 }

 return $vars;
 }
}

The build() Method

This method is called when using Route::url(). Route::url() passes the query string (minus the
option={componentname} portion) to the method which returns an array containing the
necessary portions of the URL to be constructed in the order they need to appear in the final
SEF URL.

// $query = 'task=view&id=123&format=rss'
public function build(&$query)

 23 / 31

COMPONENTS

{
 $segments = array();

 if (!empty($query['task']))
 {
 $segments[] = $query['task'];
 unset($query['task']);
 }
 if (!empty($query['id']))
 {
 $segments[] = $query['id'];
 unset($query['id']);
 }
 if (!empty($query['format']))
 {
 $segments[] = $query['format'];
 unset($query['format']);
 }

 return $segments;
}

Will return:

Array(
 'view',
 '123',
 'rss'
);

This will in turn be passed back to Route::url() which will construct the final SEF URL of
example/view/123/rss.

The parse() Method

This method is automatically called on each page view. It is passed an array of segments of the
SEF URL that called the page. That is, a URL of example/view/123/rss would be separated by
the forward slashes with the first segment automatically being associated with a component
name. The rest are stored in an array and passed to parse() which then associates each
segment with an appropriate variable name based on the segment's position in the array.

 24 / 31

COMPONENTS

public function parse($segments)
{
 $vars = array();

 if (empty($segments))
 {
 return $vars;
 }
 if (isset($segments[0]))
 {
 $vars['task'] = $segments[0];
 }
 if (isset($segments[1]))
 {
 $vars['id'] = $segments[1];
 }
 if (isset($segments[2]))
 {
 $vars['format'] = $segments[2];
 }

 return $vars;
}

Note: Position of segments is very important here. A URL of example/view/123/rss could yield
completely different results than a URL of example/rss/view/123.

 25 / 31

COMPONENTS

Configuration

Overview

The framework allows the use of parameters stored in each component.

Defining Options

Configuration options can also be defined in a separate file named config.xml located in the
/config sub-directory of the component directory.

/app
.. /components
.. .. /com_hello
.. /config
.. config.xml

The XML file's root element should be <config>. Fields are then added and grouped by
fieldsets. These fieldsets correspond to the tabs located in the admin side when viewing the
component's options.

<?xml version="1.0" encoding="utf-8"?>
<config>
 <fieldset
 name="greetings"
 label="COM_HELLOWORLD_CONFIG_GREETING_SETTINGS_LABEL"
 description="COM_HELLOWORLD_CONFIG_GREETING_SETTINGS_DESC"
 >
 <field
 name="greeting"
 type="text"
 label="COM_HELLOWORLD_FIELD_GREETING_LABEL"
 description="COM_HELLOWORLD_FIELD_GREETING_DESC"
 default=""
 />
 </fieldset>
</config>

 26 / 31

COMPONENTS

It is good practice to use the component's language file to define all the appropriate strings.

Retrieving Values

One may quickly retrieve the options for any component by calling the params() method on the
Component facade or directly accessing the method on the underlying
HubzeroComponentLoader class. This method returns a HubzeroConfigRegistry object.

$params = Component::params('com_hello');

echo $param->get('greeting');

 27 / 31

COMPONENTS

Packaging

Overview

It is possible to install a component manually by copying the files using an SFTP client and
modifying the database tables. It is more efficient to create a package file in the form on an XML
document that will allow the Installer to do this for you. This package file contains a variety of
information:

basic descriptive details about your component (i.e. name), and optionally, a description,
copyright and license information.
a list of files that need to be copied.
optionally, a PHP file that performs additional install and uninstall operations.
optionally, an SQL file which contains database queries that should be executed upon
install/uninstall

Note: All components must be prefixed with com_.

Manifest

This XML file just lines out basic information about the component such as the owner, version,
etc. for identification by the installer and then tells the installer which files should be copied and
installed.

A typical component manifest:

<?xml version="1.0" encoding="utf-8"?>
<extension type="component" version="1.5.0">
 <name>hello_world</name>
 <!-- The following elements are optional and free of formatting contt
raints -->
 <creationDate>2007 01 17</creationDate>
 <author>John Doe</author>
 <authorEmail>john.doe@example.org</authorEmail>
 <authorUrl>http://www.example.org</authorUrl>
 <copyright>Copyright Info</copyright>
 <license>License Info</license>
 <!-- The version string is recorded in the components table -->
 <version>Component Version String</version>
 <!-- The description is optional and defaults to the name -->
 <description>Description of the component ...</description>

 <!-- Custom Install Script to execute -->

 28 / 31

COMPONENTS

 <!-- Note: This will be copied from the root of the installation pack
age to the administrator directory automatically -->
 <installfile>install.eventlist.php</installfile>

 <!-- Custom Uninstall Script to execute -->
 <!-- Note: This will be copied from the root of the installation pack
age to the administrator directory automatically -->
 <uninstallfile>uninstall.eventlist.php</uninstallfile>

 <!-- Install Database Section -->
 <install>
 <sql>
 <file driver="mysql" charset="utf8">install.mysql.utf8.sql</file>
 <file driver="mysql">install.mysql.nonutf8.sql</file>
 </sql>
 </install>

 <!-- Uninstall Database Section -->
 <uninstall>
 <sql>
 <file driver="mysql" charset="utf8">uninstall.mysql.utf8.sql</file>
 <file driver="mysql">uninstall.mysql.nonutf8.sql</file>
 </sql>
 </uninstall>

 <!-- Site Main File Copy Section -->
 <files>
 <filename>index.html</filename>
 <filename>test.php</filename>
 <folder>views</folder>
 </files>

 <!-- Site Main Language File Copy Section -->
 <languages>
 <language tag="en-GB">en-GB.com_test.ini</language>
 <language tag="de-DE">de-DE.com_test.ini</language>
 <language tag="nl-NL">nl-NL.com_test.ini</language>
 </languages>

 <!-- Site Main Media File Copy Section -->
 <media destination="com_test">
 <filename>image.png</filename>
 <filename>flash.swf</filename>
 </media>

 <administration>

 29 / 31

COMPONENTS

 <!-- Administration Menu Section -->
 <menu img="components/com_test/assets/test-16.png">EventList</menu>
 <submenu>
 <!-- Note that all & must be escaped to & for the file to be valid
XML and be parsed by the installer -->
 <menu link="option=com_helloworld&task=hello&who=world">Hello World
!</menu>
 <!-- Instead of link you can specify individual link attributes -->
 <menu img="icon" task="hello" controller="z" view="a" layout="b" su
b="c">Hello Again!</menu>
 <menu view="test" layout="foo">Testing Foo Layout</menu>
 </submenu>

 <!-- Administration Main File Copy Section -->
 <!-- Note the folder attribute: This attribute describes the folder
 to copy FROM in the package to install therefore files copied
 in this section are copied from /admin/ in the package -->
 <files folder="admin">
 <filename>index.html</filename>
 <filename>admin.test.php</filename>
 </files>

 <!-- Administration Language File Copy Section -->
 <languages folder="admin">
 <language tag="en-GB">en-GB.com_test.ini</language>
 <language tag="de-DE">de-DE.com_test.ini</language>
 <language tag="nl-NL">nl-NL.com_test.ini</language>
 </languages>

 <!-- Administration Main Media File Copy Section -->
 <media folder="admin" destination="com_test">
 <filename>admin-image.png</filename>
 <filename>admin-flash.swf</filename>
 </media>
 </administration>
</extension>

Structure

Packaging a component for distribution is relatively easy. The file and directory structure is
exactly as it would be after installation. For example, all front-end files are places within a
directory called /site and all administration files are placed within a directory called /admin.

 30 / 31

COMPONENTS

Here's what a typical package will look like:

/com_{componentname}
 {componentname}.xml
 /site
 {componentname}.php
 controller.php
 /views
 /{viewname}
 /tmpl
 default.php
 /models
 {modelname}.php
 /controllers
 {controllername}.php
 /admin
 {componentname}.php
 controller.php
 /views
 /{viewname}
 /tmpl
 default.php
 /models
 {modelname}.php
 /controllers
 {controllername}.php

Just "zip" up the primary directory into a compressed archive file. When the ZIP file is installed,
the language file is copied to
/app/bootstrap/{client}/language/{LanguageName}/{LanguageName}.{ComponentName}.ini and
is loaded each time the module is loaded. All of the other files are copied to the
/app/components/{ComponentName} directory of the installation.

Powered by TCPDF (www.tcpdf.org)

 31 / 31

http://www.tcpdf.org

