
STRUCTURE

Structure

Naming Conventions

The model, view and controller files use classes from the framework, HubzeroBaseModel,
HubzeroComponentView and HubzeroComponentSiteController, respectively. Each class is
then extended with a new class specific to the component.

Administrative controllers extend HubzeroComponentAdminController which in turn extends
HubzeroComponentSiteController and adds a few extra methods frequently used throughout
the administrative portion of the site.

All components must be under the Components namespace and follow PSR-0 naming scheme
with one exception: files and folders may be lowercase even when their class names are not.

Directories & Files

Components follow the Model-View-Controller (MVC) design pattern. This pattern separates the
data gathering (Model), presentation (View) and user interaction (Controller) activities of a
module. Such separation allows for expanding or revising properties and methods of one
section without requiring additional changes to the other sections.

In its barest state, no database entry or other setup is required to "install" a component. Simply
placing the component into the /components directory will make it available for use. However, if
a component requires the installation of database tables or configuration (detailed in the
config.xml file), then an administrator must install the component using one of the installation
options in the administrative back-end.

Note: Components not installed via one of the installation options or without a database entry in
the #__extensions table will not appear in the administrative list of available components.

To illustrate the typical component directory structures and files:

/app
.. /components
.. .. /com_example
.. /admin
.. /api
.. /helpers
.. /models
.. /site
.. /assets
.. /css
.. /js

 1 / 4

STRUCTURE

.. /img

.. /controllers

.. example.php

.. /views

.. /example

.. /tmpl

.. display.php

.. display.xml

.. example.php

.. router.php

Files are contained within directories titled "com_example". Some directories and files are
optional but, for this example, we've included a more common setup.

All client-specific files and sub-directories are split between the respective client directories,
such as admin and site. Since controllers and views are specific to a client, they reside within
those client directories. Shared files, typically models and helpers, are within directories at the
same level as the client folders.

Directory & File Explanation

/com_{componentname}/{client}/{componentname}.php
This is the component's entry point for the admin and site clients. API and Cli (console)
are special cases and don't require this file.

/com_{componentname}/{client}/views

This folder holds the different views for the component.

/com_{componentname}/views/{viewname}
This folder holds the files for the view {ViewName}.

/com_{componentname}/views/{viewname}/tmpl

This folder holds the template files for the view {ViewName}.

/site/views/{viewname}/tmpl/default.php
This is the default template for the view {ViewName}.

/com_{componentname}/models

This folder holds additional models, if needed by the application.

 2 / 4

STRUCTURE

/com_{componentname}/models/{modelname}.php
This file holds the model class {ComponentName}Model{ModelName}. This
class must extend the base class "HubzeroBaseModel". Note that the view
named {ViewName} will by default load a model called {ViewName} if it exists.
Most models are named after the view they are intended to be used with.

/com_{componentname}/{client}/controllers

This folder holds additional controllers, if needed by the application.

/com_{componentname}/{client}/controllers/{controllername}.php
This file holds the controller class {ComponentName}Controller{ControllerName}.
This class must extend the base class HubzeroComponentsSiteController.

Entry Point

The CMS is always accessed through a single point of entry: index.php for the Site Application
or administrator/index.php for the Administrator Application. The application will then load the
required component, based on the value of 'option' in the URL or in the POST data. For our
component, the URL would be:

For search engine friendly URLs:
/hello

For non-SEF URLs:
/index.php?option=com_hello

This will load our main file, which can be seen as the single point of entry for our component:
components/com_hello/hello.php.

Implementation

<?php
// Define the namespace
// Components{ComponentName}{ClientName};
namespace ComponentsHelloSite;

// Get the requested controller
$controllerName = Request::getCmd('controller', Request::getCmd('view'
, 'one'));

// Ensure the controller exists

 3 / 4

STRUCTURE

if (!file_exists(__DIR__ . DS . 'controllers' . DS . $controllerName .
 '.php'))
{
 App::abort(404, Lang::txt('Controller not found'));
}
require_once(__DIR__ . DS . 'controllers' . DS . $controllerName . '.p
hp');
$controllerName = __NAMESPACE__ . '\Controllers\' . ucfirst(strtolower
($controllerName));

// Instantiate controller
$controller = new $controllerName();
// Execute whatever task(s)
$controller->execute();

The first statement is defining the namespace. All component namespaces must be under the
Components namespace.

__DIR__ is a pre-defined PHP constant that evaluates to the absolute path to the current
directory, in our case /webroot/app/components/com_hello/site.

DS is the directory separator of your system: either '/' or ''. This is automatically set by the
framework so the developer doesn't have to worry about developing different versions for
different server OSs. The DS constant should always be used when referring to files on the local
server.

First we look for a requested controller name. There is a default set in case none has been
passed or if the requested controller is not found. With the controller name, we build the class
name for the controller following the standard namespaced camel-cased pattern of
Components{Component name}{Client name}Controllers{Controller name}

After the controller is created, we instruct the controller to execute the task, as defined in the
URL: index.php?option=com_hello&task=sometask. If no task is set, the default task 'display'
will be assumed. When display is used, the 'view' variable will decide what will be displayed.
Other common tasks are save, edit, new...

The main entry point (hello.php) essentially passes control to the controller, which handles
performing the task that was specified in the request.

Note that we don't use a closing PHP tag in this file: ?>. The reason for this is that we will not
have any unwanted whitespace in the output code. This is default practice and will be used for
all php-only files.

Powered by TCPDF (www.tcpdf.org)

 4 / 4

http://www.tcpdf.org

