
TOOL DEVELOPERS

Tool Developers

Learn how to create new simulation and modeling tools and publish them on a HUB. Sections
include:

Overview of Tool Development Process
Using Subversion Source Code Control
Rappture Toolkit for Creating Graphical User Interfaces
Rappture web site

 1 / 54

http://nanohub.org/resources/3863
http://nanohub.org/resources/3061
http://nanohub.org/resources/240
http://rappture.org

TOOL DEVELOPERS

Overview

Tool Development Process

Each hub relies on its user community to upload tools and other resources. Hubs are normally
configured to allow any user to upload a tool. The process starts with a particular user filling out
a web form to register his intent to submit a tool. This tells the hub manager to create a new
project area for the tool. The user then uploads code into a Subversion source code repository,
and develops the code within a workspace. The user can work alone or with a team of other
users. When the tool is ready for testing, the hub manager installs the tool and asks the
development team to approve it. Then, the hub manager takes one last look at the tool, and if
everything looks good, moves the tool to the "published" state. Of course, a tool can be
improved even after it is published, and re-installed, approved, and published over and over
again.

The complete process is explained in the tool maintenance documentation for hub managers.
Additional details about this process can be found in the following seminars:

Bootcamp Course for New Developers
 Overview of Tool Development Process
 Using Workspaces
 Using Subversion for Source Code Control

Creating Graphical User Interfaces

If a tool already has a graphical user interface that runs under Linux/X11, then it can be
published as-is, usually in a matter of hours. There are two caveats:

If the tool relies heavily on graphics, it may not perform very well within HUBzero
execution containers. Our containers run in cluster nodes without graphics cards, and
are therefore configured with MESA for software emulation of OpenGL. This has much
poorer performance than ordinary desktop computers with a decent graphics card, so
frame rates are much lower. Also, all graphics are transmitted to the user's web browser
after rendering, again lowering the frame rate. You can expect to achieve a few frames
per second in the hub environment--good enough to view and interact with the data, but
far below 100 frames/sec that you would normally see on a desktop computer.
Tools running within the hub have access to the hub's local file system--not the
user's desktop. Many tools have a File menu with an Open option. When a user
invokes this option within the hub environment, it will bring up a file dialog showing the
hub file system. The user won't see his own local files there unless he uploads them first
via sftp, webdav, or the hub's importfile command.

The graphical user interface for any tool published in the hub environment can be created using
standard toolkits for desktop applications--including Java, Matlab, Python/QT, etc.

 2 / 54

/documentation/2.0.0/managers/maintenance.tools
https://nanohub.org/resources/14671
https://nanohub.org/resources/14668
http://nanohub.org/resources/3081
https://nanohub.org/resources/14669

TOOL DEVELOPERS

If you're looking for an easy way to create a graphical interface for a legacy tool or simple
modeling code, check out the Rappture Toolkit that is included as part of HUBzero. Rappture
reads a simple XML-based description of a tool and generates a graphical user interface
automatically. It interfaces naturally with many programming languages, including C/C++,
Fortran, Matlab, Python, Perl, Tcl/Tk, and Ruby. It creates tools that look something like the
following:

Rappture was designed for the hub environment and therefore addresses the caveats listed
above. All Rappture-based tools have integrated visualization capabilities that take advantage
of hardware-accelerated rendering available on the HUBzero rendering farm. Rappture-based
tools also include options to upload/download data from the end user's desktop via the
importfile/exportfile commands available within HUBzero.

For more details about Rappture, see the following links:

Rappture Quick Overview
Developing Scientific Tools for the HUBzero Platform (introductory course with 7
lectures)
Rappture Reference Manual

 3 / 54

http://rappture.org
https://nanohub.org/infrastructure/rappture/wiki/whatIsRappture
http://hubzero.org/resources/tooldev
https://nanohub.org/infrastructure/rappture/wiki/Documentation

TOOL DEVELOPERS

Combining Tools

Overview

Some of the tools on any hub are really a collection of 3-5 programs acting like a "workbench"
for a particular application. Berkeley Computational Nanoscience Class Tools is one such
example. It is really a collection of several separate Rappture-based applications, all running on
the same desktop, in the same tool session.

We've created a simple window manager called nanoWhim that makes it easy to switch back
and forth between several applications on a desktop--without all of the fuss and bother
associated with a typical window manager. A tool using nanoWhim looks like this:

The combobox at the top lets users switch between applications. Each window that pops up
within an application is managed by a set of tabs.

nanoWhim is based on the Whim window manager written in Tcl/Tk. We needed something like
this for nanoHUB to create a very simple tabbed interface, so users could easily switch between
a couple of tools within the same tool session. A more comprehensive workflow interface is
under development, but this simple solution is sometimes useful.

Flipping between tools

 4 / 54

http://www.nanohub.org/tools/ucb_compnano/
http://rappture.org
http://whim.linuxsys.net/site/0

TOOL DEVELOPERS

The following example shows a Rappture-based application that popped up a separate Jmol
application for molecular visualization. Jmol pops up in its own tab, and you can easily switch
back and forth between the original application and the Jmol popup by clicking on the tabs, as
shown below:

You can click on the x on the Jmol tab to close that application.

You can select another application by using the combobox at the very top of the window. That
brings up another Rappture-based application, with a different set of inputs and outputs.

 5 / 54

http://rappture.org
http://jmol.sourceforge.net/
http://rappture.org

TOOL DEVELOPERS

You can run each program independently, and the outputs stay separate. If you flip back to the
previous application, it will be sitting just the way you left it.

Configuring nanoWhim

To use nanoWhim, you'll need to create two files in the "middleware" directory for your tool:
nanowhimrc and invoke.

The nanowhimrc File

This file configures the various applications that pop up within the tool session. Here's a very
simple example:

set an icon
set.config controls_icon header.gif

first app is an xterm
start.app "Terminal Window" xterm

second app is a web browser
start.app "Web Browser" firefox

Any line that starts with a pound sign (#) is treated as a comment.

The set.config command configures various aspects of the window manager. Right now, the
only useful option is controls_icon, which sets the icon shown in the top-left corner of the
window. Note that a relative file name is interpreted with respect to the location of the
nanowhimrc file itself. In this case, we've assumed that the image header.gif is sitting in the
same directory as nanowhimrc.

The rest of the file contains a series of start.app commands for each application that you want
to offer. In this case, the first application is called "Terminal Window" and is just an xterm
application. The second application is the Firefox web browser, which we label "Web Browser".

Here's a more realistic example:

#
Customize the nanoWhim window manager
#
set.config controls_icon header.gif

 6 / 54

TOOL DEVELOPERS

start.app "Average"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/avg -p
 /apps/java/bin

start.app "Molecular Dynamics (Lennard-Jones)"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/ljmd -
p /apps/java/bin

start.app "Molecular Dynamics (LAMMPS)"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/lammps
 -p /apps/java/bin -p /apps/lammps/lammps-12Feb07/bin

start.app "Monte Carlo (Hard Sphere)"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/hsmc -
p /apps/java/bin

start.app "Ising Simulations"
 /apps/java/bin/java -classpath $dir/../bin MonteCarlo

Each start.app command starts a different Rappture-based application. The first argument in
quotes is the title of the application, which is displayed in the combobox at the top of the
window. The remaining arguments are treated as the Unix command that is invoked to start the
application.

The commands shown here all use the /apps/rappture/invoke_app script to invoke a Rappture-
based application. The -t argument for that script indicates the project (tool) name. The -T
argument indicates which directory contains the Rappture tool.xml file. You can use $dir here to
locate the directory relative to the nanowhimrc file. Each -p argument adds a directory onto the
execution path (environment variable $PATH), which may be needed for simulators and other
tools invoked by the Rappture program.

The invoke File

The nanowhimrc file configures the window manager, but the middleware/invoke script actually
invokes it. Every tool on nanoHUB has its own invoke script sitting in the middleware directory.
Your invoke script should look like this if you want to use nanoWhim:

#!/bin/sh
/apps/nanowhim/invoke_app -t ucb_compnano

This script invokes the nanoWhim window manager for the project specified by the -t argument.

 7 / 54

TOOL DEVELOPERS

This is the short name that you gave when you registered your tool with nanoHUB. This script
looks for the middleware/nanowhimrc file within your source code, and launches nanoWhim with
that configuration.

Testing Your Tool

Normally, you develop and test tools within a workspace in your hub. If you're using nanoWhim,
that's still true for the individual applications. In other words, you can test each application
individually within a workspace. But to get the full effect of the nanoWhim manager running all
applications at once, you'll have to get your tool to "installed" status, and then launch the
application in test mode. For details about doing this, see the tool maintenance documentation
for hub managers or the lecture on Uploading and Publishing New Tools. Look at the tool status
page for your own tool project and find the Launch Tool button. This is what you would normally
do to test any tool before approving it. Once you're in the "installed" stage and you're able to
click Launch Tool, the nanoWhim configuration should take effect and you'll be able to test the
overall combined tool.

 8 / 54

/documentation/2.0.0/managers/maintenance/tools
/documentation/2.0.0/managers/maintenance/tools
/resources/173

TOOL DEVELOPERS

Invoking tools with invoke scripts

Overview

Invoke scripts are small programs, usually written in sh or bash, used to setup the application
container environment so the tool can run properly. More specifically, invoke scripts are
responsible for:

 Locating tool.xml for Rappture applications
 Setting up the PATH and other optional environment variables
 Starting the window manager
 Starting optional subprograms, like filexfer
 Starting the application

For most applications, the invoke script is a single command that calls the default HUBzero
invoke script, named invoke_app, with a few options set. In some rare situations, the tool needs
the application container setup in a manner that invoke_app cannot handle. In these cases, the
tool developer can modify the tool's invoke script to appropriately setup the application
container.

The sections below list out details regarding the options of invoke_app, how to launch Rappture
tools using an invoke script that calls invoke_app, and how to launch non-Rappture tools using
an invoke script that calls invoke_app.

invoke_app and its options

HUBZero's default tool invocation script is called invoke_app. It is a bash script, usually located
in /usr/bin. When called with no options, the script tries to automatically find the needed
information to start the applications. There are a number of options that can be provided to alter
the script's behavior.

invoke_app accepts the following options:

 -A tool arguments
 -c execute command in background
 -C command to execute for starting the tool
 -e environment variable (${VERSION} substituted with $TOOL_VERSION)
 -f No FULLSCREEN
 -p add to path (${VERSION} substituted with $TOOL_VERSION)
 -r rappture version
 -t tool name
 -T tool root directory
 -u use envionment packages
 -v visualization server version

 9 / 54

TOOL DEVELOPERS

 -w specify alternate window manager

Here is a detailed description of the options:

 -A pass the provided enquoted arguments onto
the tool.

Example usage:

-A "-q blah1 -w blah2"

The options -q and -w are not parsed by invoke,
but are passed on to the tool

 -c Commands to run in the background before
the tool launches.

Exmple usage:

-c "echo hi" -c "filexfer"

This prints "hi" to stdout and starts filexfer
 -C Command to execute for starting tool. Tool's

command line arguments can be included in
this option, or can be placed in the -A option.

Example usage:

Call a program, named myprog, located in the
tool's bin directory:

-C @tool/bin/myprog

Call a program, named myprog, located in the
tool's bin directory, with program arguments "-e
val1" and "-b val2":

-C "@tool/bin/myprog -e val1 -b val
2"

 10 / 54

TOOL DEVELOPERS

Call a program, named myprog, located in the
tool's bin directory with arguments -e val1 and
-b val2, used in conjunction with invoke_app's
-A option:

-C @tool/bin/myprog -A "-e val1 -b
val2"

Call a program, named myprog, located in the
tool's bin directory. We can omit the path of the
program if it is an executable and located in the
tool's bin directory because the tool's bin
directory is added to the PATH environment
variable. This would not work for calling a Perl
script in a fashion similar to perl myscript.pl
because in this case, perl is executable and
myscript.pl is the argument.:

-C myprog

Call simsim with no arguments:

-C /apps/rappture/bin/simsim

Call simsim with the options -tool and -values,
to be parsed by simsim:

-C "/apps/rappture/bin/simsim -tool
 driver.xml -values random"

Call simsim with the options -tool and -values,
to be parsed by simsim:

-C /apps/rappture/bin/simsim -A "-t
ool driver.xml -values random"

 -e Set an environment variable.

Example usage:

 11 / 54

TOOL DEVELOPERS

-e LD_LIBRARY_PATH=@tool/../${VERSI
ON}/lib:${LD_LIBRARY_PATH}

Within the value part of this option's argument,
the text ${VERSION} is automatically
substituted with the value of the variable
${TOOL_VERSION}. Similarly, the text @tool is
substituted with the value of ${TOOLDIR}. By
setting the environment variable, you are
overwritting its previous value.

 -f no full screen - disable FULLSCREEN
environment variable, used by Rappture, to
expand the window to the full available size of
the screen.

 -p Prepend to the PATH environment variable.

Example usage:

-p @tool/../${VERSION}/bin

 Within the value part of this option's argument,
the text ${VERSION} is automatically
substituted with the value of the variable
${TOOL_VERSION}. Similarly, the text @tool is
substituted with the value of ${TOOLDIR}. By
setting this option the PATH environment
variable is adjusted, but not overwritten.

 -r sets RAPPTURE_VERSION which dictates
which version of rappture is used and may
manipulate the version of the tool that is run. If
left blank, the version will be determined by
looking at $SESSIONDIR/resources file.

 Accpetable values include "test", "current",
"dev".

 When RAPPTURE_VERSION is "test",
RAPPTURE_VERSION is reset to current and
TOOL_VERSION is set to dev. The current
version of rappture is used and the dev version
of the tool is used when launching the program.

 When RAPPTURE_VERSION is "current",

 12 / 54

TOOL DEVELOPERS

TOOL_VERSION is set to "current". The
current version of rappture is used and the
current version of the tool is used when
launching the program.

 When RAPPTURE_VERSION is "dev",
TOOL_VERSION is set to "dev". The dev
version of rappture is used and the dev version
of the tool is used when launching the tool.

 -t sets ${toolname} which is used while setting
up tool paths for TOOLDIR and TOOLXML.
${toolname} is the short name (or project name)
of the tool. It is the same as the name used in
the source code repository. With respect to the
tool contribution process, it is the "toolname" in
the path
/apps/toolname/version/rappture/tool.xml.
Setting this option will change the paths
searched while trying to locate tool.xml and the
bin directory.

 -T Tool root directory. This is the directory
holding a checked out version of the code from
the source code repository. It typically has the
src, bin, middleware, rappture, docs, data, and
examples directories underneath it. With
respect to the tool contribution process, it is the
"/apps/toolname/version" in the path
/apps/toolname/version/rappture/tool.xml.
Setting this option will change the paths
searched while trying to locate tool.xml and the
bin directory. Typically when testing this option
is used to specify where the tool directory is. In
this case, its the present working directory:

-T $PWD

 -u Set use scripts to invoke before running the
tool.

Example usage:

-u octave-3.2.4 -u petsc-3.1-real-
gnu

These would setup octave-3.2.4 and petsc-3.1
in the environment that your tool would launch
in.

 13 / 54

TOOL DEVELOPERS

 -v Visualization server version. This option
changes which visualization servers are setup
in the file $SESSIONDIR/resouces. Currently,
the only recognized option is dev. If left blank
this option defaults to the "current" visualization
servers. This option essentially decides whether
to run the script update_vis or update_viz_dev.

Example:

-v dev

This option irrelevant if no visualization server is
available.

 -w set the window manager. The default value is
to use the ratpoison window manager if it
exists. If ratpoison is not installed on the
system, look for the icewm captive window
manager setup. Use this flag to choose an
alternative window manager. Valid values for
this option include: "ratpoison" and "captive"

Examples:

Use the icewm captive window manager.

-w captive

Use the ratpoison window manager.

-w ratpoison

invoke_app is called from within a tool's invoke script. The invoke script is stored in the
middleware directory of the tool's source code repository.

Using invoke_app with Rappture tools

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a Rappture application looks similar to this:

#!/bin/sh

/usr/bin/invoke_app "$@" \\

 14 / 54

TOOL DEVELOPERS

 -t calc

In the invoke script above, invoke_app, located in the directory /usr/bin, is called with "$@" and
"-t calc". "$@" represents all options that the invoke script itself received. "-t calc" tells
invoke_app that the toolname is "calc". This information is used by invoke_app to figure out
which tool it is supposed to be launching and where that tool is installed.

For most Rappture applications, the invoke script is very simple. The above is enough for
invoke_app to start looking for a tool.xml file. invoke_app looks for the file named tool.xml. It
uses the TOOLDIR variable to help decide where to look. If the tool.xml file is not found in the
${TOOLDIR}/rappture directory, invoke_app will exit explaining that it could not find the tool.xml
file. The TOOLDIR variable can be set from the command line using the -T flag:

/usr/bin/invoke_app "$@" -t calc -T ${PWD}

Actually, it is more common to see the -T flag provided to a tool's invoke script, and the option is
forwarded to invoke_app by "$@":

./middleware/invoke -T ${PWD}

In the above example, the TOOLDIR variable is set to the present working directory, which is
stored in the variable PWD. Specifying the -T option is usually not needed, but can help when
invoke_app is confused on what it is supposed to be launching.

Using invoke_app with non-Rappture tools

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a non-Rappture application looks similar to this:

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t calc \\
 -C calc \\
 -c filexfer \\
 -w captive

 15 / 54

TOOL DEVELOPERS

In the invoke script above, invoke_app, located in the directory /usr/bin, is called with "$@", "-t
calc", "-C calc", "-c filexfer", "-w captive". "$@" represents all options that the invoke script itself
received. "-t calc" tells invoke_app that the toolname is "calc". This information is used by
invoke_app to figure out which tool it is supposed to be launching and where that tool is
installed. "-C calc" tells invoke_app that the command to run to start the tool is "calc". "-c
filexfer" tells invoke_app to start up the filexfer program before starting the tool's graphical user
interface. "-w captive" tells invoke_app to use the icewm captive window manager. For non-
rappture applications the icewm captive window manager may be preferred over the ratpoison
window manager if there are multiple graphical user interface windows that could popup.

The invoke script above could be made more svelte if the we did not want to start filexfer and
we wanted to use the ratpoison window manager. After all, not all applications require files from
the user, so they don't need the filexfer program. Here's an example of the tool named calc (the
"-t calc" option), that is started by the executable named calc (the "-T calc" option), and uses the
default window manager which is ratpoison.

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t calc \\
 -C calc

Other invoke script examples

Here are a few common invoke scripts examples that demonstrate using invoke_app options.

Use the -u option to setup Octave-3.2.4 in the path before starting the tool's graphical user
interface. The -u option sources a "use" script (octave-3.2.4 in this example) from the
/apps/environ directory.

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t calc \\
 -C calc \\
 -u octave-3.2.4

 16 / 54

TOOL DEVELOPERS

Use the -A option to send additional arguments to the command to be executed:

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t calc \\
 -C calc \\
 -A "-value 13 -value 5 -op add"

Or:

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t calc \\
 -C "calc -value 13 -value 5 -op add"

Launching a Matlab tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t app-fermi

Launching a Python tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/usr/bin/invoke_app "$@" \\
 -t app-fermi

Launching a Java tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

 17 / 54

TOOL DEVELOPERS

/usr/bin/invoke_app "$@" \\
 -t app-fermi

 18 / 54

TOOL DEVELOPERS

Accessing Outside Computing Resources

Overview

Tools are hosted within a "tool session" running within the hub environment. The tool session
supports the graphical interface, which helps the user set up the problem and visualize results.
If the underlying calculation is fairly light weight (e.g., runs in a few minutes or less), then it can
run right within the same tool session. But if the job is more demanding, it can be shipped off to
another machine via the "submit" command, leaving the tool session host less taxed and more
responsive.

This chapter describes the "submit" command, showing how it can be used at the command line
within a workspace and also within Rappture-based tools.

 19 / 54

TOOL DEVELOPERS

Submit Command

Overview

submit takes a user command and executes it remotely. The objective is to allow the user to
issue a command in the same manner as a locally executed command. Multiple submission
mechanisms are available for run dissemination. A set of steps are executed for each run
submission:

Destination site is selected
A wrapper script is generated for remote execution
If needed a batch system description file is generated.
Input files for a run are gathered and transferred to the remote site. Transferred files
include the wrapper and batch description scripts.The wrapper script is executed remotely.
Progress of the remote run is monitored until completion.
Output files from the run are returned to the dissemination point.

Command Syntax

submit command options can be determined by using the help parameter of the submit
command.

$ submit --help
Usage: submit [options]

Options:
 -h, --help Report command usage. Optionally request listi
ng of
 managers, tools, or venues.
 -l, --local Execute command locally
 -v, --venue Remote job destination
 -i, --inputfile Input file
 -p, --parameters Parameter sweep variables. See examples.
 -d, --data Parametric variable data - csv format
 -s SEPARATOR, --separator=SEPARATOR
 Parameter sweep variable list separator
 -n NCPUS, --nCpus=NCPUS
 Number of processors for MPI execution
 -N PPN, --ppn=PPN Number of processors/node for MPI execution
 -w WALLTIME, --wallTime=WALLTIME
 Estimated walltime hh:mm:ss or minutes
 -e, --env Variable=value
 -m, --manager Multiprocessor job manager
 -r NREDUNDANT, --redundancy=NREDUNDANT

 20 / 54

TOOL DEVELOPERS

 Number of indentical simulations to execute in
 parallel
 -M, --metrics Report resource usage on exit
 -W, --wait Wait for reduced job load before submission
 -Q, --quota Enforce local user quota on remote execution h
ost
 -q, --noquota Do not enforce local user quota on remote exec
ution
 host

Parameter examples:

submit -p @@cap=10pf,100pf,1uf sim.exe @:indeck

 Submit 3 jobs. The @:indeck means "use the file indeck as a te
mplate
file." Substitute the values 10pf, 100pf, and 1uf in place of @@cap wi
thin the
file. Send off one job for each of the values and bring back the resul
ts.

submit -p @@vth=0:0.2:5 -p @@cap=10pf,100pf,1uf sim.exe @:indeck

 Submit 78 jobs. The parameter @@vth goes from 0 to 5 in steps
of 0.2,
so there are 26 values for @@vth. For each of those values, the parame
ter
@@cap changes from 10pf to 100pf to 1uf. 26 x 3 = 78 jobs total. Again
@:indeck is treated as a template, and the values are substituted in p
lace of
@@vth and @@cap in that file.

submit -p params sim.exe @:indeck

 In this case, parameter definitions are taken from the file na
med
params instead of the command line. The file might have the following
contents:

 # paramters for my job submission
 parameter @@vth=0:0.2:5
 parameter @@cap = 10pf,100pf,1uf

submit -p "params;@@num=1-10;@@color=blue" job.sh @:job.data

 For someone who loves syntax and complexity... The semicolon s

 21 / 54

TOOL DEVELOPERS

eparates
the parameters value into three parts. The first says to load paramete
rs from
a file params. The next part says add an additional parameter @@num th
at goes
from 1 to 10. The last part says add an additional parameter @@color w
ith a
single value blue. The parameters @@num and @@color cannot override an
ything
defined within params; they must be new parameter names.

submit -d input.csv sim.exe @:indeck

 Takes parameters from the data file input.csv, which must be i
n comma-
separated value format. The first line of this file may contain a seri
es of
@@param names for each of the columns. If it doesn't, then the columns
 are
assumed to be called @@1, @@2, @@3, etc. Each of the remaining lines
represents a set of parameter values for one job; if there are 100 suc
h lines,
there will be 100 jobs. For example, the file input.csv might look lik
e this:

 @@vth, @@cap
 1.1, 1pf
 2.2, 1pf
 1.1, 10pf
 2.2, 10pf

 Parameters are substituted as before into template files such
as
@:indeck.

submit -d input.csv -p "@@doping=1e15-1e17 in 30 log" sim.exe @:infile

 Takes parameters from the data file input.csv, but also adds a
nother
parameter @@doping which goes from 1e15 to 1e17 in 30 points on a log
scale.
For each of these points, all values in the data file will be executed
. If the
data file specifies 50 jobs, then this command would run 30 x 50 = 150
0 jobs.

 22 / 54

TOOL DEVELOPERS

submit -d input.csv -i @:extra/data.txt sim.exe @:indeck

 In addition to the template indeck file, send along another fi
le
extra/data.txt with each job, and treat it as a template too.

submit -s / -p @@address=23 Main St.,Hometown,Indiana/42
Broadway,Hometown,Indiana -s , -p @@color=red,green,blue job.sh @:job.
data

 Change the separator to slash when defining the addresses, the
n change
back to comma for the @@color parameter and any remaining arguments. W
e
shouldn't have to change the separator often, but it might come in han
dy if
the value strings themselves have commas.

submit @@num=1:1000 sim.exe input@@num

 Submit jobs 1,2,3,...,1000. Parameter names such as @@num are
recognized not only in template files, but also for arguments on the c
ommand
line. In this case, the numbers 1,2,3,...,1000 are substituted into th
e file
name, so the various jobs take their input from "input1", "input2", ..
.,
"input1000".

submit @@file=glob:indeck* sim.exe @:file

 Look for files matching indeck* and use the list of names as t
he
parameter @@file. Those values could be substituted into other templat
e files,
or used on the command line as in this example. Suppose the directory
contains
files indeckA, indeckB, and indeck-123. This example would launch thre
e jobs
using each of those files as input for the job.

Additional information is available by requesting user specific lists of choices for some

 23 / 54

TOOL DEVELOPERS

command options. The available option lists are generated for a user based on configured
restrictions and availability. The values listed here are for example only and may not be
available on all HUBs.

$ submit --help tools

Currently available TOOLs are:
 pegasus-plan

$ submit --help venues

Currently available VENUES are:
 DiaGrid
 WF-DiaGrid

$ submit --help managers

Currently available MANAGERs are:
 mpi
 mpich
 parallel

By specifying a suitable set of command line parameters it is possible to execute commands on
configured remote systems. The simple premise is that a typical command line can be prefaced
by submit and its arguments to execute the command remotely.

$ submit -v clusterA echo Hello world!
Hello world!

In this example the echo command is executed on the venue named clusterA where runs are
executed directly on the host. Execution of the same command on a cluster using PBS would
be done in a similar fashion

$ submit -v clusterB echo Hello world!
(2586337) Simulation Queued Wed Oct 7 14:45:21 2009
(2586337) Simulation Done Wed Oct 7 14:54:36 2009
$ cat 00577296.stdout
Hello world!

 24 / 54

TOOL DEVELOPERS

submit supports an extensible variety of submission mechanisms. HUBzero supported
submission mechanisms are

local - use batch submission mechanisms available directly on the submit host. These
include PBS, condor, and Pegasus batch queue submission.
ssh - direct use of ssh. Submit manages access to a common ssh key, essentially
serving as a proxy for the HUB user.
ssh + remote batch submission - use ssh to do batch run submission remotely. Again
methods for PBS, condor, and Pegasus batch queue submission are provided.

In addition to single site submission the -r/--redundancy option provides the option to
simultaneously submit runs to multiple remote venues. In such cases the successful completion
of a run at one venue cancels runs at all other venues. If none of the runs are successful results
from one of the runs are returned to the user. Redundant submission is not allowed when
performing parametric sweeps.

A site for remote execution is selected in one of the following ways, listed in order of
precedence:

Execute the command within the user tool session, -l/--local option
User specified on the command line with -v/--venue option.
Randomly selected from remote sites associated pre-staged application.
Select randomly from all configured sites

Any files specified by the user plus internally generated scripts are packed into a tarball for
delivery to the remote site. Individual files or entire directory trees may be listed as command
inputs using the -i/--inputfile option. Additionally command arguments that exist as files or
directories will be packed into the tarball. If using ssh based submission mechanisms the tarball
is transferred using scp.

The job wrapper script is executed remotely either directly or submitted to a batch queue. The
job is subject to all remote queuing restrictions and idiosyncrasies.

Remote batch jobs are monitored for progress. Methods appropriate to the batch queuing
system are used to check job status at a configurable frequency. A typical frequency is on the
order one minute. Job status changes are reported to the user. The maximum time between
reports to the user is set on the order of five minutes even in the absence of change. The job
status is used to detect job completion.

The same methods used to transfer input files are applied in reverse to retrieve output files. Any

 25 / 54

TOOL DEVELOPERS

files and directories created or modified by the application are be retrieved. A tarball is retrieved
and expanded to the home base directory. It is up to the user to avoid the overwriting of files.

In addition to the application generated output files additional files are generated in the course
of remote run execution. Some of these files are for internal bookkeeping and are consumed by
submit, a few files however remain in the home base directory. The remaining files include
RUNID.stdout and RUNID.stderr, it is also possible that a second set of standard output/error
files will exist containing the output from the batch job submission script. RUNID represents
unique job identifier assigned by submit.

 26 / 54

TOOL DEVELOPERS

Pegasus Workflow Submission

Overview

With this version of submit new functionality has been introduced to support workflow
management using Pegasus. Two use cases are available: automatic workflow generation for
parametric sweeps on one or more variables, or user constructed workflows. In both instances
submit is used to configure access to one or more computational resources eliminating the need
for a user to supply a site catalog thereby simplifying use of the workflow management system.

Parametric Sweeps

submit command options -p/--parameters and -d/--data have added to provide support for
specifying parameter sweeps in a compact general way. The user is relieved of the chore of
generating entire sets of input files and command arguments comprising a parameter sweep.
Substitutable parameters are declared on the submit command line. Values of these parameters
can then be systematically substituted into data files or application command line parameters.
submit performs the necessary substitutions to cover all parameter combination. Each
combination of parameters is abstractly represented as a node in a workflow and concretely
executed as a job on the designated computational resource. A simple curses interface is
provided to monitor progress of the simulation run.

User Constructed Workflows

Parameter sweeps are represented as a simple workflow consisting of many individual
independent nodes. That is data is not shared between nodes or jobs in the run. There are
cases where this simple approach is not sufficient to describe a workflow required to achieve a
developer's or user's objective. Under these circumstances a developer may create a workflow
and build an application around where the user supplies values for selected inputs. In such
cases the Pegasus API's may be used to generate the abstract workflow description in the form
of a dax file. The dax file can then executed by a simple submit command.

submit pegasus-plan --dax daxFile

In cases where more than one venue is capable of executing Pegasus runs a specific venue
can be requested on the command line, otherwise submit will choose a venue at random.

submit -v DiaGrid pegasus-plan --dax daxFile

 27 / 54

http://pegasus.isi.edu
http://pegasus.isi.edu/documentation

TOOL DEVELOPERS

There are several additional options to pegasus-plan command that are supplied by submit. A
few of the command options may be provided on the command line. submit reserves the option
to silently ignore options as it sees fit.

In addition to remote execution of Pegasus runs it is also possible to do the execution locally
with in the tool session. Simply use the submit -l/--local option.

submit --local pegasus-plan --dax daxFile

The use command can be employed to put pegasus-plan and all other Pegasus commands in
the PATH environment variable. In additional to setting PATH, other environment variables are
set allowing use of the python and java dax generation API's.

 28 / 54

TOOL DEVELOPERS

Rappture Integration with Submit

Overview

It is possible to use the submit command to execute simulation jobs generated by Rappture
interfaces remotely. A common approach is to create a shell script which can exec'd or forked
from an application wrapper script. This approach has been applied to TCL, Python, Perl
wrapper scripts. To avoid consumption of large quantities of remote resources it is imperative
that the submit command be terminated when directed to do so by the application user (Abort
button).

TCL Wrapper Script

submit can be called from a TCL Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt. Setting execctl to 1 will
terminate the process and any child processes.

package require Rappture
Rappture::signal SIGHUP sHUP {
 puts "Caught SIGHUP"
 set execctl 1
}
Rappture::signal SIGTERM sTERM {
 puts "Caught SIGTERM"
 set execctl 1
}

A second code segment is used to build an executable script that can executed using
Rappture::exec. The trap statement will catch the interrupt thrown when the wrapper script
execution is Aborted. Putting the submit command in the background allows for the possibility of
issuing multiple submit commands from the script. The wait statement forces the shell script to
wait for all submit commands to terminate before exiting.

 set submitScript "#!/bin/sh\\n\\n"
 append submitScript "trap cleanup HUP INT QUIT ABRT TERM\\n\\n"
 append submitScript "cleanup()\\n"
 append submitScript "{\\n"
 append submitScript " kill -TERM `jobs -p`\\n"
 append submitScript " exit 1\\n"

 29 / 54

TOOL DEVELOPERS

 append submitScript "}\\n\\n"

 append submitScript "cd [pwd]\\n"
 append submitScript "submit -v cluster -n $nodes -w $walltime\\\\\\
n"
 append submitScript " COMMAND ARGUMENTS &\\n"
 append submitScript "sleep 5\\n"
 append submitScript "wait\\n"

 set submitScriptPath [file join [pwd] submit_script.sh]
 set fid [open $submitScriptPath w]
 puts $fid $submitScript
 close $fid
 file attributes $submitScriptPath -permissions 00755

The standard method for wrapper script execution of commands can now be used. This will
stream the output from all submit commands contained in submit_script.sh to the GUI display.
The same output will be retained in the variable out.

set status [catch {Rappture::exec $submitScriptPath} out]

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

 set out2 ""
 foreach errfile [glob -nocomplain *.stderr] {
 if [file size $errfile] {
 if {[catch {open $errfile r} fid] == 0} {
 set info [read $fid]
 close $fid
 append out2 $info
 }
 }
 file delete -force $errfile
 }
 foreach outfile [glob -nocomplain *.stdout] {
 if [file size $outfile] {
 if {[catch {open $outfile r} fid] == 0} {
 set info [read $fid]
 close $fid
 append out2 $info
 }
 }

 30 / 54

TOOL DEVELOPERS

 file delete -force $outfile
 }

The script file should be removed.

file delete -force $submitScriptPath

The output is presented as the job output log.

$driver put output.log $out2

All other result processing can proceed as normal.

Python Wrapper Script

submit can be called from a python Rappture wrapper script for remote batch job submission.
An example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to import some predefined functions that manage typical
aspects of remote submission. An important aspect is the handling of user interruption via the
Abort button.

import os
from Rappture.tools import executeCommand as RapptureExec

A second code segment is used to build a list containing an executable submit command to be
executed using RapptureExec. RapptureExec will trap signals initiated by pressing the Abort
button. The submit command must terminate before RapptureExec exits and returns control to
the application wrapper script.

 submitCommand = ["submit","-v",venue,"-n",nodes,
 "-w",walltime,COMMAND,ARGUMENTS]
 exitStatus,stdOutput,stdError = RapptureExec(submitCommand)

The standard method for wrapper script execution of commands can now be used. This will

 31 / 54

TOOL DEVELOPERS

stream the output from the submit command to the GUI display. The same output will be
retained in the variable stdOutput.

The submit command creates files to hold COMMAND standard output and standard error. By
default the file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

 reStdout = re.compile(".*.stdout$")
 reStderr = re.compile(".*.stderr$")

 out2 = ""
 errFiles = filter(reStderr.search,os.listdir(os.getpwd()))
 if errFiles != []:
 for errFile in errFiles:
 errFilePath = os.path.join(os.getpwd(),errFile)
 if os.path.getsize(errFilePath) > 0:
 f = open(errFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stderror = ''.join(outFileLines)
 out2 += 'n' + stderror
 os.remove(errFilePath)

 outFiles = filter(reStdout.search,os.listdir(os.getpwd()))
 if outFiles != []:
 for outFile in outFiles:
 outFilePath = os.path.join(os.getpwd(),outFile)
 if os.path.getsize(outFilePath) > 0:
 f = open(outFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stdoutput = ''.join(outFileLines)
 out2 += 'n' + stdoutput
 os.remove(outFilePath)

The output is presented as the job output log.

 lib.put("output.log", out2, append=1)

All other result processing can proceed as normal.

 32 / 54

TOOL DEVELOPERS

Perl Wrapper

submit can be called from a perl Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt.

use Rappture

my $ChildPID = 0;

sub trapSig {
 print "Signal @_ trapped\\n";
 if($ChildPID != 0) {
 kill 'TERM', $ChildPID;
 exit 1;
 }
}
$SIG{TERM} = \&trapSig;
$SIG{HUP} = \&trapSig;
$SIG{INT} = \&trapSig;

A second code segment is used to build an executable script that can executed using
Rappture.tools.getCommandOutput. The trap statement will catch the interrupt thrown when the
wrapper script execution is Aborted. The wait statement forces the shell script to wait for the
submit command to terminate before exiting.

$SCRPT = "submit_app.sh";
open(FID,">$SCRPT");
print FID "#!/bin/sh\\n";
print FID "\\n";
print FID "trap cleanup HUP INT QUIT ABRT TERM\\n\\n";
print FID "cleanup()\\n";
print FID "{\\n";
print FID " kill -s TERM `jobs -p`\\n";
print FID " exit 1\\n";
print FID "}\\n\\n";

 33 / 54

TOOL DEVELOPERS

print FID "submit -v cluster -n $nPROCS -w $wallTime COMMAND ARGUMENTS
 &\\n";
print FID "wait %1\\n";
print FID "exitStatus=\\$?\\n";
print FID "exit \\$exitStatus\\n";
close(FID);
chmod 0775, $SCRPT;

The standard fork and exec method for wrapper script execution of commands can now be
used. Using this approach does not allow streaming of the command outputs.

if (!defined($ChildPID = fork())) {
 die "cannot fork: $!";
} elsif ($ChildPID == 0) {
 exec("./$SCRPT") or die "cannot exec $SCRPT: $!";
 exit(0);
} else {
 waitpid($ChildPID,0);
}

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered with standard perl commands for file matching, reading,
etc. All other result processing can proceed as normal.

Octave/Matlab Script

submit can be called from a Octave or Matlab Rappture wrapper script for remote batch job
submission. An example of what code to insert in the wrapper script is detailed here.

 -- Function: [EXITSTATUS] = rpExec(COMMAND,STREAMOUTPUT)
 -- Function: [EXITSTATUS, STDOUTPUT] = rpExec(COMMAND,STREAMOUTPUT)
 -- Function: [EXITSTATUS, STDOUTPUT, STDERROR] = rpExec(COMMAND,STREA
MOUTPUT)

 Execute COMMAND with the ability to terminate the process upon
 reception of a interrupt, hangup, or terminate signal. Doing so
 allows the process to terminated when the Rappture "Abort" button
 is pressed. COMMAND should contain a set of strings that compris
e
 the command to be executed. If STREAMOUTPUT equals 1 the stdou
 and stderr from COMMAND are piped back to the current process
 stdout and stderr descriptors as COMMAND executes.

 34 / 54

TOOL DEVELOPERS

 On output EXITSTATUS indicates whether or not an error occurred.
 EXITSTATUS equals 0 indicates that no error occurred. If STDOUTPU
T
 is supplied it will contain a copy of stdout from COMMAND. In th
e
 same manner if STDERROR is supplied it will contain a copy of
 stderr from COMMAND.

 Example:

 [exitStatus,stdOutput,stdError] = rpExec({"submit","-wallTime","3
0","lammps-12Feb14-serial","-in","lmp.in"},1);

 35 / 54

TOOL DEVELOPERS

Accesing your home directory

Overview

Accessing your home directory on the HUB is easy with the three methods described in this
section. While sFTP is the most common, you will find which method works best for you.

 36 / 54

TOOL DEVELOPERS

sFTP

Accessing your home directory via sFTP

sFTP, or secure FTP, is a program that uses SSH to transfer files. Unlike standard FTP, it
encrypts both commands and data, preventing passwords and sensitive information from being
transmitted in the clear over the network. It is functionally similar to FTP, but because it uses a
different protocol, you can't use a standard FTP client to talk to an sFTP server, nor can you
connect to an FTP server with a client that supports only sFTP.

The following tutorial should help you in using sFTP to connect to and from your HUBzero
server(s).

Warning: Most accounts do not have SSH/sFTP access initially. Your system administrator
must grant your account access before you will be able to connect.

Graphical Clients

Using graphical SFTP clients simplifies file transfers by allowing you to transmit files simply by
dragging and dropping icons between windows. When you open the program, you will have to
enter the name of the host (e.g., yourhub.org) and your HUB username and password.

Windows Clients

WinSCP
BitKinex
FileZilla
PuTTY

Mac OSX Clients

Transmit
Fetch
Cyberduck
Flow
Fugu

Command-line

You can use command line SFTP from your Unix account, or from your Mac OS X or Unix
workstation. To start an SFTP session, at the command prompt, enter:

yourmachine:~ you$ sftp username@host
yourmachine:~ you$ username@host password:

host ~

 37 / 54

http://winscp.net/
http://www.bitkinex.com/sftpclient/
http://filezilla-project.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.panic.com/transmit/
http://fetchsoftworks.com/
http://cyberduck.ch/
http://extendmac.com/flow/
http://rsug.itd.umich.edu/software/fugu/

TOOL DEVELOPERS

Some standard commands for command-line sFTPCommand Description
cd Change the directory on the remote computer
chmod Change the permissions of files on the remote

computer
chown Change the owner of files on the remote

computer
dir (or ls) List the files in the current directory on the

remote computer
exit (or quit) Close the connection to the remote computer

and exit SFTP
get Copy a file from the remote computer to the

local computer
help (or ?) Get help on the use of SFTP commands
lcd Change the directory on the local computer
lls See a list of the files in the current directory on

the local computer
lmkdir Create a directory on the local computer
ln (or symlink) Create a symbolic link for a file on the remote

computer
lpwd Show the current directory (present working

directory) on the local computer
lumask Change the local umask value
mkdir Create a directory on the remote computer
put Copy a file from the local computer to the

remote computer
pwd Show the current directory (present working

directory) on the remote computer
rename Rename a file on the remote host
rm Delete files from the remote computer
rmdir Remove a directory on the remote host (the

directory usually has to be empty)
version Display the SFTP version
 ! In Unix, exit to the shell prompt, where you can

enter commands. Enter exit to get back to
SFTP. If you follow ! with a command (e.g.,
!pwd), SFTP will execute the command without
dropping you to the Unix prompt.

 38 / 54

TOOL DEVELOPERS

WebDAV

Accessing your home directory via WebDAV

WebDAV is the Distributed Authoring and Versioning extension to the standard HTTP/HTTPS
web protocol. It allows a client to browse a remote filesystem, usually with a graphical browser
that makes it appear that your files are on your desktop. You may access your hub storage
using only the secure version of this service (HTTPS). We do not support HTTP. Most modern
computer platforms support HTTPS transport for WebDAV with either small adjustments or
freely available software.

Linux/Unix

If you use the KDE graphical desktop environment, you can access your hub storage with the
Konqueror browser by typing the special URL webdavs://webdav.hubname.org/webdav/
(open source: webdavs://hubname.org/webdav/) into the Location field of the browser. It
will prompt you for your hub login and password. Thereafter, you traverse your home directory
by clicking on folders and you can drag and drop files to your desktop.
Cadaver is a text-mode WebDAV browser. It can be used if it is compiled with SSL support.
Invoke it with the command cadaver https://webdav.hubname.org/webdav/ (open
source: https://hubname.org/webdav/) and it will prompt you for your hub login and
password. You can then use it in a manner similar to FTP.
If you are using Linux, you can use the davfs kernel module to mount your hub storage area as
a local filesystem.

Macintosh

MacOS versions 10.4 and higher support HTTPS transport for WebDAV using the Finder.

1. Select the Go menu in the Finder and choose "Connect to Network Server".
2. Enter the URL https://webdav.hubname.org/webdav/ (open
source: https://hubname.org/webdav/ into the address field.

3. When prompted, enter your Network ID credentials.

You should now be able to drag files and folders between your computer and the site to which
you just connected.

Windows 10, 8.1, 8 and 7

Windows 10, 8.1 and 8 use the WebClient Services to connect to a WebDAV Servers, by
default the WebClient service is disabled, so we need to enable it.

 39 / 54

http://www.webdav.org/cadaver/
http://dav.sourceforge.net/

TOOL DEVELOPERS

1. From the Start menu, choose Control Panel, then System and Security, then
Administrative Tools, and then Services.

2. Scroll down to WebClient, set the service to Automatic, and then click Apply.
3. If the service is not already running, click Start.
4. Click OK to close the Control Panel and close other windows.

Windows 10

To set up a WebDAV connection in Windows 10:

1. From the Start Menu go to File Explorer and select This PC on the left hand pane
2. Select Computer from the top ribbon
3. Click on Map Network Drive
4. Click Connect to a Web site that you can use to store your documents and

pictures.
5. Click Next
6. Select Choose another network location and click Next
7. Enter "https://webdav.hubname.org/webdav/" (open
source: https://hubname.org/webdav/). Replace "hubname.org" with the URL
of the destination hub and click Next

8. Enter your password, and click Ok
9. Click Next, then Finish

10. When prompted, enter your Hub credentials.
11. You should see a new Network Drive under your Computer/This PC. Double click on it

to open.

You should now be able to drag files and folders between your computer and the hub via the
network drive to which you just connected.

Windows 8.x

To set up a WebDAV connection in Windows 8.x:

1. Using the Search interface in tile mode, locate and select the Computer tile.
2. In the quick menu at the top of the screen, click Map Network Drive.
3. In the "Folder" field, enter a URL that points to the destination hub similar to the

following URL "https://webdav.hubname.org/webdav/" (open
source: https://hubname.org/webdav/). Replace "hubname.org" with the URL
of the destination hub.

4. Select the Connect using different credentials box, and then click Finish.
5. When prompted, enter your Hub credentials.
6. You should see a new Network Drive under your Computer/This PC. Double click on it

to open.

You should now be able to drag files and folders between your computer and the hub via the

 40 / 54

TOOL DEVELOPERS

network drive to which you just connected.

Windows 7

To set up a WebDAV connection in Windows 7.

1. From the Start menu, right-click Computer, and select Map network drive.
2. Enter a URL that points to the destination hub similar to the following URL

"https://webdav.hubname.org/webdav/" (open source:
https://hubname.org/webdav/). Replace "hubname.org" with the URL of the
destination hub. Clink finish.

3. When prompted, enter your Hub credentials.
4. You should see a new Network Drive under your Computer/This PC. Double click on it

to open.

You should now be able to drag files and folders between your computer and the hub via the
network drive to which you just connected.

If you have difficulty dragging and dropping, right-click the file or folder you want to copy, and
choose Copy. Then right-click the directory you want to put it in, and choose Paste.

 41 / 54

TOOL DEVELOPERS

filexfer (in Workspace tool)

Accessing your home directory files via filexfer (in Workspace tool)

Filexfer, short for 'file transfer', is a utility that you can call from within the workspace tool to
transfer a file into your home directory from your local machine or download a file from your
home directory. Type 'filexfer' in the xterm provided to you when you start the workspace tool.
You should now see the filexfer GUI as it appears in the image below.

Click on "Upload" or "Download" for the desired action. Please note, that you must enable pop-
ups in your browser to proceed. The following windows that appear allow you to browse or
download per your selected action. Note: filexfer is currently limited to uploading one file at a
time..

 42 / 54

TOOL DEVELOPERS

Tool Paths

Overview

Providing the tool user ls an important part of building a tool. Where can I place example files
that a user will select on first use? Where can I place temporary generated files during the tool
runtime? Where can I save a user's work? Where can I place simulation results for the user?
Can these results be available in a future session? All these questions and more are addressed
in the following sections.

 43 / 54

TOOL DEVELOPERS

Environment Variables

Environment Variables

A number of environment variables available in a tool session. A few are discussed here. A full
list can be viewed by running the "env" command from a terminal in the workspace tool.

*Note: tools are invoked by the user's account and permissions set accordingly. A tool can save
files to a user's home directory because the tool runs as that user.

SESSION="session id"

This variable stores the session ID or session number that is currently active. It's the ID of the
session you are currently using.

USER="username"

This variable stores the current username of the user running the tool.

SESSIONDIR=/home/"hub hostname"/"username"/data/sessions/"session
id"

This variable stores the current session directory of the open tool. This session directory is a
separate directory create for each new tool session that the tool can write to. This is a good
place for temporary files generated by your tool.

*This is the default path for a tool on invoke.

RESULTSDIR=/home/"hub hostname"/"username/data/results/"session id"

This variable stores the results directory located in the user's home directory. This is a good
place to place simulation results for the user to access later.

*Be mindful of the user's quota limits.

 44 / 54

TOOL DEVELOPERS

PWD=/"present working directory"

This variable stores the present working directory.

HOME=/home/"hub hostname"/"username"

This variable stores the path of the user's home directory. This is useful if a tool provided an
option to save the user's current work. Please create a directory for the tool to save files here, to
prevent cluttering the user's home directory too much. A best practice would be to create a
new directory for a tool in the user's data directory. For example, "$HOME/data/toolname".

 45 / 54

TOOL DEVELOPERS

Passing path variables with the Invoke Script

Overview

Passing variable for use in the runtime tool environment are typically necessary, in particular the
"@tool" .

See the full invoke_app documentation here:
https://hubzero.org/documentation/1.3.1/tooldevs/invoke

@tool

The variable "@tool" can be passed into your tool via the invoke script. This is important
information for you tool to know so that the tool can access example input files and static data
files that reside in the respective directories. There are two way to pass the "@tool" location via
the invoke script to the tool.

1) As an argument to the tool

 -A "@tool"

2) As an environment variable

 -e TOOL_REPO_PATH=@tool

 46 / 54

TOOL DEVELOPERS

Example Files

Small Files

Files less than 100MB, can be placed in the 'data' or 'examples' directory within the SVN
repository.

Large Files

Files greater than 100MB, should be place in the appropriate /data directory outside of the SVN
repository. This path can be accessed directly.

*Note: this is by special request only, please contact your HUB Liaison.

 47 / 54

TOOL DEVELOPERS

Tool Generated Files

Tempory Files at runtime

Temporary files that are generated by a tool at runtime should be written to the default session
directory using the SESSIONDIR environment variable. Ideally, these temporary files should be
removed when the tool no longer need them.

Simulation Results Files

Simulation output files that are generated by a tool should be written to the results directory
using the RESULTSDIR environment variable. This directory is created in the user's home
directory for the user to easily find the simulation results. The tool may also read from that
directory and present a list of the resulting files to the user.

 48 / 54

TOOL DEVELOPERS

Importing and exporting user files

Overview

We provide two scripts to facilitate the uploading and downloading of files for a tool. This allows
users to upload their own input file to the tool via the web interface. The export script allows a
user to download a tool simulation result directly from the tool via the web interface without
accessing their home directory separately.

 49 / 54

TOOL DEVELOPERS

Import File

Overview

"importfile" is the command line tool that, when run, opens a pop-up window prompting the user
to browse and select file that is then uploaded.

You can use this command to transfer one or more files from your desktop to your tool session
via a web browser. This command causes a web page to pop up prompting you for various files
on your desktop. Choose one or more files and submit the form. The files will be uploaded to
your tool session and saved in the file names specified on the command line. You must have
popups enabled for this to work properly.

Implementation

This script should be implemented as a background process in a non-rappture tool. Typically a
pipe is used to run this script off the main process of the tool. The piped process should be
monitored by the tool code for a response upon completion of the user's file upload. The script
will continue to wait for a file to be uploaded indefinitely. Please code appropriately for this.

Help text

USAGE: /usr/bin/importfile [-f|--for text] [-l|--label text] file file ...

 options:
 -h or --help
 Prints this help message.

 -f or --for <text>
 Short explanation of what the data will be used for; for
 example, "for CNTBands 2.0". If given, this text is inserted
 into the upload form to help explain what it will be used for.

 -l or --label <text>
 Prompt for subsequent file arguments using this label string.
 The default label just uses the file name.

 -m or --mode acsii|binary|auto
 In "binary" mode, files are transferred exactly as-is. In
 "ascii" mode, control-M characters are removed, which helps

 50 / 54

TOOL DEVELOPERS

 when loading Windows files into the Linux environment. The
 default is "auto", which removes control-M from text files
 but leaves binary files intact.

 -p or --provenance
 Print more verbose results showing the provenance information
 for all files uploaded. Instead of a series of space-separated
 file names, this produces one line for each file showing the
 final file name and where it came from, which is either the
 file name on the user's desktop or @CLIPBOARD meaning that the
 user pasted information into the text entry area. For example:
 foo.tgz <= gui15.tar.gz
 bar.txt <= @CLIPBOARD

 --
 Remaining arguments are treated as file names, even if they
 start with a -.

 file
 Uploaded file will be saved in this file name within your
 tool session. If file is @@ then the file is given the same
 name it had before it was uploaded. If no file arguments
 are included, the default is "@@", meaning upload a single
 file and use the name it had on the desktop.

You can use this command to transfer one or more files from your
desktop to your tool session via a web browser. This command causes
a web page to pop up prompting you for various files on your desktop.
Choose one or more files and submit the form. The files will be
uploaded to your tool session and saved in the file names specified
on the command line.

This command returns a list of names for files actually uploaded.

 51 / 54

TOOL DEVELOPERS

Export File

Overview

You can use this command to transfer one or more files from your tool session to your desktop
via a web browser. A separate web browser page is opened for each file. You must have
popups enabled for this to work properly.

Implementation

This script can be implemented as a background process in a non-rappture tool. This allow the
user to continue to use the tool while the file downloads to their machine in the background.
Typically a pipe is used to run this script off the main process of the tool. This is optional

Help text

USAGE: /usr/bin/exportfile [-t|--timeout secs] [-d|--delete] [-m|--message file] [-f|--format
raw|html] file file...

 options:
 -h or --help
 Prints this help message.

 -t or --timeout <seconds>
 Forget about the file after this timeout. Default is 86,400
 seconds (1 day).

 -d or --delete
 Delete the file after the timeout or when the tool is shut
 down. Should be used only with temporary files.

 -m or --message
 File containing a fragment of HTML text that will be displayed
 above the download. It might say "Here is your data," or
 "If you use this data, please cite this source."

 -f or --format <type>
 Choices are "raw" and "html". Default is "raw". The "html"
 format causes the server to rewrite links embedded within
 the HTML, so that images can be displayed and links can be

 52 / 54

TOOL DEVELOPERS

 traversed properly.

 --
 Remaining arguments are treated as file names, even if they
 start with a -.

You can use this command to transfer one or more files from your
tool session to your desktop via a web browser. A separate web
browser page is opened for each file. You must have popups enabled
for this to work properly.

 53 / 54

TOOL DEVELOPERS

Large Data Paths

Overview

A directory structure for the storage of large data may be available upon request.

Communication with the specific Hub PI is required to determine the scope of resources needed
for the implementation of large data sets. Hard disk space allocation will take into consideration
the amount of available disk space remaining and the size of the data set that is to be placed on
the hub. When approved, please submit a support ticket to have the directory created.

Shared data directory for a specific tool and its tool developers

A possible directory of "/data/tools/[toolname]" is to be set with permissions of 775, including
write access for only members listed as developers of the tool (app-[toolname] group). Data
stored here is intended to be used in a tool.

/data/* should be mounted in the tool containers.

Shared data directory for a specific group and its members

A possible directory of "/data/groups/[groupname]" is set with permissions of 775, including write
access for only members listed members of the group. Data stored here is intended to be used
in a tool.

/data/* should be mounted in the tool containers.

Powered by TCPDF (www.tcpdf.org)

 54 / 54

http://www.tcpdf.org

