
INSTALLATION (DEBIAN 6/7)

Installation (Debian 6/7)

What is HUBzero?

HUBzero is a platform used to create dynamic web sites for scientific research and educational
activities. With HUBzero, you can easily publish your research software and related educational
materials on the web. Powerful middleware serves up interactive simulation and modeling tools
via your web browser. These tools can connect you with rendering farms and powerful Grid
computing resources.

Minimum System Requirements

HUBzero installations require one or more dedicated hosts running Debian GNU/Linux version 6
(squeeze) or 7 (wheezy).

A typical starter HUBzero installation might consist of a single physical server with dual 64-bit
quad-core CPUs, 24 Gigabytes of RAM and a terabyte of disk.

Production systems should try to not limit hardware resources, HUBzero is designed to run on
systems with many CPU cores and lots of RAM. If you are looking for a system to run a small
site with limited physical or virtual resources this is probably not the system for you. However,
for demonstration or development purposes we often create VM images with less than a
gigabyte of RAM and 5 gigabytes of disk. While fully functional, these virtual machines would
only be suitable for a single user doing development or testing.

Target Audience

This document and the installation and maintenance of a HUBzero system has a target
audience of experienced Linux administrators (preferably experienced with Debian
GNU/Linux).

 1 / 49

INSTALLATION (DEBIAN 6/7)

Linux

Install Basic Operating System

The latest version of Debian GNU/Linux 6.0 (6.0.10 as of this writing) or Debian GNU/Linux 7.0
(7.6 as of this writing) should be installed on each host used by a HUBzero installation.

HUBzero has packaging support for amd64 (64bit) Intel architectures. i386 (32bit) packaging is
possible but was not produced for this release due to lack of demand.

To install Debian GNU/Linux, you can easily obtain a copy, and then follow the installation
instructions for your release and architecture.

Installing Debian GNU/Linux using a small bootable CD (see iso-cd subdirectory) is the simplest
method.

When the installation is complete your system will reboot into a Debian GNU/Linux system.

Don't forget to remove your installation media and/or change your server's boot media order if
you changed them prior to installation.

The precise configuration (such as disk configuration, networking, etc) is dependent on how the
hub is to be used and what hardware is being used. These instructions outline the simplest "hub
in a box" configuration but may not be suitable for larger sites. It is expected that the hub will be
managed by an experienced Linux administrator who can help scale your site to the capacity
required.

Set hostname

Throughout this documentation you will see specific instructions for running commands, with
part of the text highlighted. The highlighted text should be modified to your local configuration
choices. (e.g. replace "example.com" with the fully qualified hostname of your machine).

Optional. If you didn't specify the fully qualified domain name when running setup you will need
to set it here.

HUBzero expects the `hostname` command to return the fully qualified hostname for the
system.

hostname example.com

To make the change permanent you must also edit the file /etc/hostname, this be done simply

 2 / 49

http://www.debian.org/releases/squeeze/
http://www.debian.org/releases/wheezy/
http://cdimage.debian.org/cdimage/archive
http://debian.org/releases
http://debian.org/releases
http://cdimage.debian.org/cdimage/archive

INSTALLATION (DEBIAN 6/7)

with:

echo "example.com" > /etc/hostname

Fix hosts

Now edit /etc/hosts by making sure that a line exists that looks like

127.0.1.1 example.com example

Any other lines with "127.0.1.1" should be removed.

Delete local users

HUBzero reserves all user ids from 1000 up for hub accounts. As part of the HUBzero
middleware every account must map to a corresponding system account. Therefore when
starting up a hub it is required to remove all accounts that have user ids 1000 or greater. On a
new installation there is typically one such account that is created when you set up the hub, and
this account can be removed as follows:

rm -fr /home/username
deluser username

If you require additional system accounts, they can be numbered between 500-999 without
interfering with hub operations.

Configure Networking

Optional. If you didn't configure networking during installation you will need to do so now.

For help with networking setup try this link.

Setting up your IP address.

The IP addresses associated with any network cards you might have are read from the file
/etc/network/interfaces. This file has documentation you can read with:

 3 / 49

http://www.debian-administration.org/article/An_introduction_to_Debian_networking_setup

INSTALLATION (DEBIAN 6/7)

man interfaces

A sample entry for a machine with a static address would look something like this:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
 address 192.168.1.90
 gateway 192.168.1.1
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255

Here we've setup the IP addresss, the default gateway, and the netmask.

For a machine running DHCP the setup would look much simpler:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface - use DHCP to find our address
auto eth0
iface eth0 inet dhcp

(If you're using a DHCP based setup you must have a DHCP client package installed - usually
one of pump or dhcp-client.)

If you make changes to this file you can cause them to take effect by running:

/etc/init.d/networking restart

 4 / 49

INSTALLATION (DEBIAN 6/7)

Setting up DNS

Use whatever nameserver and other options as recommended by your ISP. If you used DHCP
to set up networking it is likely this has already been set.

When it comes to DNS setup Debian doesn't differ from other distributions. To cause your
machine to consult with a particular server for name lookups you simply add their addresses to
/etc/resolv.conf.

For example a machine which should perform lookups from the DNS server at IP address
192.168.1.10 would have a resolv.conf file looking like this:

nameserver 192.168.1.10

Configure Advanced Package Tool

Now configure the location of the HUBzero package repository by adding the following line to
/etc/apt/sources.list

For Debian 6:

deb http://packages.hubzero.org/deb diego-deb6 main

For Debian 7:

deb http://packages.hubzero.org/deb diego-deb7 main
deb http://download.openvz.org/debian wheezy main

You will need to get and install the hubzero archive key to be able to verify packages from the
hubzero archive:

apt-key adv --keyserver pgp.mit.edu --recv-keys 143C99EF

 5 / 49

INSTALLATION (DEBIAN 6/7)

For Debian 7 you will aso need the OpenVZ archive key to be able to verify packages from the
OpenVZ archive:

wget http://ftp.openvz.org/debian/archive.key -q -O - | apt-key add -

With the above configure update the local package database with information about the
packages now available through these new repositories:

apt-get update

 6 / 49

INSTALLATION (DEBIAN 6/7)

MySQL

Install

DEBIAN_FRONTEND=noninteractive apt-get install -y hubzero-mysql

If you leave off setting DEBIAN-FRONTED environment variable you will be prompted to enter a
MySQL administrative password. This password will get reset at a later step.

If you already have mysql-server installed, be aware that the root password for mysql will get
reset at a later step unless you take preventative action outlined here <link to be added later>.

Configure

Default configuration works well for starters. But for optimal performance you will need a
database administrator capable of tuning your database to your hardware configuration and site
usage.

 7 / 49

INSTALLATION (DEBIAN 6/7)

Mail

Install

We need to install exim4 to enable outgoing email

apt-get install -y exim4

Configure

dpkg-reconfigure exim4-config

Configure mail as appropriate for your site and IT infrastructure. We outline a sample
standalone configuration below. The requirement is for php to be able to send mail (registration
confirmation and other notices need to go out) and for exim4 to receive mail (for support ticket
and forum email gateway functions to work).

This is just an example of a standalone mail configuration.

General type of mail configuration

internet site; mail is sent and received directly using SMTP

Mail name

enter the fully qualified domain name (FQDN) of the host (example.com)

IP-addresses to listen on for incoming SMTP connections

leave blank (listen for connections on all available network interfaces)

Other destinations for which mail is accepted

leave blank or (equivalently) with local hostname (all local domains will be treated identically)

Domains to relay mail for

leave blank

Machines to relay mail for

 8 / 49

INSTALLATION (DEBIAN 6/7)

leave blank

Keep number of DNS-queries minimal (Dial-on-Demand)

No

Delivery method for local mail

mbox format in /var/mail/

Split configuration into small files?

Yes

Test

Use a real email address below so you can see if you get the email

Mail -v someone@gmail.com

NOTE: After being prompted for a subject and pressing return, the Mail app will read the body of
your email. Just type a test message and press return after each line. Once you are done with
your email's body, enter a single '.' on it's own line and press return. The mail program will stop
reading your input and will print a bunch of low level SMTP connection info to the screen as it
delievers your message. At the bottom you should see a "Completed" line. You might have to
press return after the "Completed" message to return to a command prompt.

 9 / 49

INSTALLATION (DEBIAN 6/7)

CMS

Install

apt-get install -y hubzero-cms-1.3.1

Configure

hzcms install example
a2dissite default default-ssl
a2ensite example example-ssl
/etc/init.d/apache2 restart

Test

The default installation of the CMS uses a self signed SSL certificate. Some browers will not
accept this certificate and not allow access to the site.

https://support.mozilla.org/en-US/questions/1012036

You will need to install a proper SSL certificate.

 10 / 49

INSTALLATION (DEBIAN 6/7)

OpenLDAP

Install HUBzero LDAP support

apt-get install -y hubzero-openldap

You will be prompted to enter a LDAP administrative password.

Some packages will ask you to configure them when you run this step

Configuring nslcd: LDAP server URI:

Enter "ldap://localhost/"

Configuring nslcd: LDAP server search base:

keep the default

Configuring libnss-ldapd

Select only "group", "passwd", "shadow"

Configure OpenLDAP Database

hzldap init
hzcms configure ldap --enable
hzldap syncusers

Test

getent passwd

You should see an entry for user 'admin' toward the end of the list if everything is working
correctly.

 11 / 49

INSTALLATION (DEBIAN 6/7)

WebDAV

Install WebDAV

apt-get install -y hubzero-webdav

Configure WebDAV

hzcms configure webdav --enable

Test

ls -l /webdav/home/admin
total 0

Browse to your site's https /webdav address (e.g. https://myhub/webdav). You should get
prompted for a username and password. Use the admin account. You should see an empty
directory listing and no error messages.

Now test using a WebDAV client.

apt-get install cadaver
cadaver https://localhost/webdav

You will be prompted to accept self signed certificate (if it is still installed) and then to enter your
username and password. Use the 'admin' account again to test. When you get the
"dav:/webdav/>" prompt just enter "ls" and it should show the test file.

Finally clean up test case

apt-get purge cadaver

Troubleshooting

 12 / 49

INSTALLATION (DEBIAN 6/7)

If the test doesn't work, check if the fuse kernel module is loaded

lsmod | grep fuse
fuse 54176 0

If there is no output then try starting the kernel module manually

modprobe fuse

Then try the test again

 13 / 49

INSTALLATION (DEBIAN 6/7)

Subversion

Install

apt-get install -y hubzero-subversion

Configure

hzcms configure subversion --enable

 14 / 49

INSTALLATION (DEBIAN 6/7)

Trac

Install

apt-get install -y hubzero-trac

Configure

hzcms configure trac --enable

 15 / 49

INSTALLATION (DEBIAN 6/7)

Forge

Install

apt-get install -y hubzero-forge

Configure

hzcms configure forge --enable

 16 / 49

INSTALLATION (DEBIAN 6/7)

OpenVZ

Install

HUBzero makes extensive use of OpenVZ containers so it is recommended to use the OpenVZ
enabled kernel on all HUBzero servers.

apt-get install hubzero-openvz

Configure

hzcms configure openvz --enable

If configuration is successful it should prompt you to reboot the server to activate the new
kernel.

reboot

Test

vzlist
Container(s) not found

Or it will list the containers currently running if you check this on a running hub. The salient point
being that the command doesn't issue any kind of error message.

 17 / 49

http://wiki.openvz.org/

INSTALLATION (DEBIAN 6/7)

Firewall

Install

apt-get install -y hubzero-firewall

HUBzero requires the use of iptables to route network connections between application
sessions and the external network. The scripts controlling this can also be used to manage
basic firewall operations for the site. If you use manage iptables with other tools you will have to
make sure the rules in these scripts are maintained. /etc/firewall_on and /etc/firewall_off turn the
HUBzero firewall on and off respectively. Scripts in /etc/rc.X/ to /etc/mw/firewall_on causes the
script to run at startup (these links were created for you). The firewall is enabled in all boot
modes 0-6. The basic scripts installed here block all access to the host except for those ports
required by HUBzero (http,https,http-alt,ldap,ssh.smtp,mysql,submit,etc).

 18 / 49

INSTALLATION (DEBIAN 6/7)

Maxwell Service

Install

apt-get install -y hubzero-mw-service

Configure

mkvztemplate amd64 wheezy diego

or

mkvztemplate amd64 squeeze diego

Then:

hzcms configure mw-service --enable

Test

maxwell_service startvnc 1 800x600 24

Enter an 8 character password when prompted (e.g., "testtest")

This should result in a newly create OpenVZ session with an instance of a VNC server running
inside of it. The output of the above command should look something like:

Reading passphrase:
testtest

 19 / 49

INSTALLATION (DEBIAN 6/7)

===================== begin /etc/vz/conf/hub-
session-5.0-amd64.umount =========================

Removing /var/lib/vz/root/1 :root etc var tmp dev/shm dev
===================== end /etc/vz/conf/hub-
session-5.0-amd64.umount ==========================
stunnel already running
Starting VE ...
===================== begin /etc/vz/conf/1.mount =====================
=====
Removing and repopulating: root etc var tmp dev
Mounting: /var/lib/vz/template/debian-5.0-amd64-maxwell home apps
===================== end /etc/vz/conf/1.mount =======================
=====
VE is mounted
Setting CPU units: 1000
Configure meminfo: 2000000
VE start in progress...
TIME: 0 seconds.
Waiting for container to finish booting.
/usr/lib/mw/startxvnc: Becoming nobody.
/usr/lib/mw/startxvnc: Waiting for 8-byte vncpasswd and EOF.
1+0 records in
1+0 records out
8 bytes (8 B) copied, 3.5333e-05 s, 226 kB/s
Got the vncpasswd
Adding auth for 10.51.0.1:0 and 10.51.0.1/unix:0
xauth: creating new authority file Xauthority-10.51.0.1:0
Adding IP address(es): 10.51.0.1
if-up.d/mountnfs[venet0]: waiting for interface venet0:0 before doing
NFS mounts (warning).
WARNING: Settings were not saved and will be resetted to original valu
es on next start (use --save flag)

vzlist
 VEID NPROC STATUS IP_ADDR HOSTNAME

 1 6 running 10.51.0.1 -

openssl s_client -connect localhost:4001

 20 / 49

INSTALLATION (DEBIAN 6/7)

This should report an SSL connection with a self signed certificate and output text should end
with:

RFB 003.008

If you see this then you successfully connected to the VNC server running inside the newly
created OpenVZ session.

Clean up

maxwell_service stopvnc 1

Which should give output similar to:

Killing 6 processes in veid 1 with signal 1
Killing 7 processes in veid 1 with signal 2
Killing 5 processes in veid 1 with signal 15
Got signal 9
Stopping VE ...
VE was stopped
===================== begin /etc/vz/conf/1.umount ====================
=====
Unmounting /var/lib/vz/root/1/usr
Unmounting /var/lib/vz/root/1/home
Unmounting /var/lib/vz/root/1/apps
Unmounting /var/lib/vz/root/1/.root

Removing /var/lib/vz/root/1 :root etc var tmp dev/shm dev
Removing /var/lib/vz/private/1: apps bin emul home lib lib32 lib64 mnt
 opt proc sbin sys usr .root
===================== end /etc/vz/conf/1.umount ======================
====
VE is unmounted

 21 / 49

INSTALLATION (DEBIAN 6/7)

Maxwell Client

Install

apt-get install -y hubzero-mw-client

Configure

hzcms configure mw-client --enable

Test

su www-data
$ ssh -i /etc/mw-client/maxwell.key root@localhost ls
The authenticity of host 'localhost (127.0.0.1)' can't be established.
RSA key fingerprint is e5:3c:7d:41:71:0b:0f:2a:0c:0e:bb:15:4d:e7:2f:08
.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (RSA) to the list of known host
s.
list of files
$ exit
#

 22 / 49

INSTALLATION (DEBIAN 6/7)

vncproxy

Install

apt-get install -y hubzero-vncproxy

Configure

hzcms configure vncproxy --enable

 23 / 49

INSTALLATION (DEBIAN 6/7)

telequotad

install

apt-get install -y hubzero-telequotad

Configure

In order for filesystems quotas to work they must be enabled when they are mounted.
Determine which filesystem contains your home directories and add "quota" to the mount option
of the corresponding entry in the /etc/fstab file. Only the filesystem with /home on it matters to
telequotad.

Determine which filesystem contains your home directories and add "quo
ta" to the mount option of the corresponding entry in the /etc/fstab f
ile.

If quotas weren't already in affect, the run something like the following (depending on your
filesystem configuration) to start up the quota system.

mount -oremount / (may fail if there is only one filesystem mount o
n the host, reboot is required before quotas can be used)
/etc/init.d/quota restart (will fail is "mount -oremount" fails)
hzcms configure telequotad --enable

Test

repquota -a

Should show disk usage for all users.

apt-get install telnet
telnet localhost 300
getquota user=admin
status=good,softspace=0,hardspace=0,space=4096,files=1,remaining=0

 24 / 49

INSTALLATION (DEBIAN 6/7)

Connection closed by foreign host.
#

 25 / 49

INSTALLATION (DEBIAN 6/7)

Workspace

Install

apt-get install hubzero-app
apt-get install hubzero-app-workspace
hubzero-
app install --publish /usr/share/hubzero/apps/workspace-1.3.hza

Test

You should then be able to log in to the site and see the "Workspace" tool in the tool list and
launch it in your browser.

Login to the site with the following credentials:

username: admin

password: located in "/etc/hubzero.secrets" as the "JOOMLA-ADMIN"

 You can access this file as the root user with the command cat /etc/hubzero.secrets .

 26 / 49

INSTALLATION (DEBIAN 6/7)

Metrics

Install

apt-get install hubzero-metrics

Configure

hzcms configure metrics --enable

 27 / 49

INSTALLATION (DEBIAN 6/7)

Rappture

Install

apt-get install hubzero-rappture

Configure

Rappture is used from inside a container and needs several other packages installed to allow
use of all its features. This process has been simplified by using the hubzero-rappture-session
with only contains the dependencies needed to pull in these other packages.

Note depending on which template you made, the chroot might be to
"debian-7.0-amd64-maxwell" or "debian-6.0-amd64-maxwell"

chroot /var/lib/vz/template/debian-7.0-amd64-maxwell
apt-get update
apt-get upgrade
apt-get install hubzero-rappture-session
exit

A workspace may need to be opened and closed a few times before the changes to the session
template appear in a workspace.

Test

 A user must setup their runtime environment in order to use the Rappture toolkit. Run the
following command before attempting to run any Rappture tests.

use rappture

Rappture comes with several demostration scripts that can effectively test many parts of the
package. These demonstrations must be copied to a user's home directory within a workspace

 28 / 49

INSTALLATION (DEBIAN 6/7)

before running.

$ mkdir examples
$ cp -r /apps/share/rappture/examples/* examples/.
$ cd examples
$./demo.bash

A window should open on the workspace showing that part of the demonstration. Close that
window to see the next demonstration. Some demonstrations may need something inputted to
work properly (such as the graphing calculator).

 29 / 49

INSTALLATION (DEBIAN 6/7)

Filexfer

Install

apt-get install -y hubzero-filexfer-xlate

Configure

hzcms configure filexfer --enable

 30 / 49

INSTALLATION (DEBIAN 6/7)

Submit

Introduction

The submit command provides a means for HUB end users to execute applications on remote
resources. The end user is not required to have knowledge of remote job submission
mechanics. Jobs can be submitted to traditional queued batch systems including PBS and
Condor or executed directly on remote resources.

Installation

apt-get install hubzero-submit-pegasus
apt-get install hubzero-submit-condor
apt-get install hubzero-submit-common
apt-get install hubzero-submit-server
apt-get install hubzero-submit-distributor
apt-get install hubzero-submit-monitors
hzcms configure submit-server --enable
/etc/init.d/submit-server start

At completion of the apt-get install commands several files will be located in the directory
/opt/submit. Excluding python files the directory listing should like the following:

 31 / 49

INSTALLATION (DEBIAN 6/7)

Configuration

submit provides a mechanism to execute jobs on machines outside the HUB domain. To
accomplish this feat some configuration is required on the HUB and some additional software
must be installed and configured on hosts in remote domains. Before attempting to configure
submit it is necessary to obtain access to the target remote domain(s). The premise is that a
single account on the remote domain will serve as an execution launch point for all HUB end
users. It is further assumes that access to this account can be made by direct ssh login or using
an ssh tunnel (port forwarding).

Having attained account access to one or more remote domains it is possible to proceed with
submit configuration. To get started the ssh public generated by the installation should be
transferred to the remote domain host(s).

HUB Configuration

The behavior of submit is controlled through a set of configuration files. The configuration files
contain descriptions of the various parameters required to connect to a remote domain,
exchange files, and execute simulation codes. There are separate files for defining remote sites,
staged tools, multiprocessor managers, file access controls, permissible environment variables,
remote job monitors, and ssh tunneling. Most parameters have default values and it is not

 32 / 49

INSTALLATION (DEBIAN 6/7)

required that all parameters be explicitly defined in the configuration files. A simple example is
given for each category of configuration file.

Sites

Remote sites are defined in the file sites.dat. Each remote site is defined by a stanza indicating
an access mechanism and other account and venue specific information. Defined keywords are

[name] - site name. Used as command line argument (-v/--venue) and in tools.dat
(destinations)
venues - comma separated list of hostnames. If multiple hostnames are listed one site
will chosen at random.
tunnelDesignator - name of tunnel defined in tunnels.dat.
siteMonitorDesignator - name of site monitor defined in monitors.dat.
venueMechanism - possible mechanisms are ssh and local.
remoteUser - login user at remote site.
remoteBatchAccount - some batch systems requirement that an account be provided in
addition to user information.
remoteBatchSystem - the possible batch submission systems include CONDOR, PBS,
SGE, and LSF. SCRIPT may also be specified to specify that a script will be executed
directly on the remote host.
remoteBatchQueue - when remoteBatchSystem is PBS the queue name may be
specified.
remoteBatchPartition - slurm parameter to define partition for remote job
remoteBatchPartitionSize - slurm parameter to define partition size, currently for BG
machines.
remoteBatchConstraints - slurm parameter to define constraints for remote job
parallelEnvironment - sge parameter
remoteBinDirectory - define directory where shell scripts related to the site should be
kept.
remoteApplicationRootDirectory - define directory where application executables are
located.
remoteScratchDirectory - define the top level directory where jobs should be executed.
Each job will create a subdirectory under remoteScratchDirectory to isolated jobs from
each other.
remotePpn - set the number of processors (cores) per node. The PPN is applied to PBS
and LSF job description files. The user may override the value defined here from the

 33 / 49

INSTALLATION (DEBIAN 6/7)

command line.
remoteManager - site specific multi-processor manager. Refers to definition in
managers.dat.
remoteHostAttribute - define host attributes. Attributes are applied to PBS description
files.
stageFiles - A True/False value indicating whether or not files should be staged to
remote site. If the the job submission host and remote host share a file system file
staging may not be necessary. Default is True.
passUseEnvironment - A True/False value indicating whether or not the HUB 'use'
environment should passed to the remote site. Default is False. True only makes sense
if the remote site is within the HUB domain.
arbitraryExecutableAllowed - A True/False value indicating whether or not execution of
arbitrary scripts or binaries are allowed on the remote site. Default is True. If set to False
the executable must be staged or emanate from /apps. (deprecated)
executableClassificationsAllowed - classifications accepted by site. Classifications are
set in appaccess.dat
members - a list of site names. Providing a member list gives a layer of abstraction
between the user facing name and a remote destination. If multiple members are listed
one will be randomly selected for each job.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.
failoverSite - specify a backup site if site is not available. Site availability is determined
by site probes.
checkProbeResult - A True/False value indicating whether or not probe results should
determine site availability. Default is True.
restrictedToUsers - comma separated list of user names. If the list is empty all users
may garner site access. User restrictions are applied before group restrictions.
restrictedToGroups - comma separated list of group names. If the list is empty all groups
may garner site access.
logUserRemotely - maintain log on remote site mapping HUB id, user to remote batch
job id. If not explicitly set the default value is False.
undeclaredSiteSelectionWeight - used when no site is specified to choose between sites
where selection weight > 0.
minimumWallTime - minimum walltime allowed for site or queue. Time should be
expressed in minutes.
maximumWallTime - maximum walltime allowed for site or queue. Time should be
expressed in minutes.
minimumCores - minimum number of cores allowed for site or queue.
maximumCores - maximum number of cores allowed for site or queue.
pegasusTemplates - pertinent pegasus templates for site, rc, and transaction files.

An example stanza is presented for a site that is accessed through ssh.

 34 / 49

INSTALLATION (DEBIAN 6/7)

[cluster]
venues = cluster.campus.edu
remotePpn = 8
remoteBatchSystem = PBS
remoteBatchQueue = standby
remoteUser = yourhub
remoteManager = mpich-intel64
venueMechanism = ssh
remoteScratchDirectory = /scratch/yourhub
siteMonitorDesignator = clusterPBS

Tools

Staged tools are defined in the file tools.dat. Each staged tool is defined by a stanza indicating
an where a tool is staged and any access restrictions. The existence of a staged tool at multiple
sites can be expressed with multiple stanzas or multiple destinations within a single stanza. If
the tool requires multiprocessors a manager can also be indicated. Defined keywords are

[name] - tool name. Used as command line argument to execute staged tools. Repeats
are permitted to indicate staging at multiple sites.
destinations - comma separated list of destinations. Destination may exist in sites.dat or
be a grid site defined by a ClassAd file.
executablePath - path to executable at remote site. The path may be given as an
absolute path on the remote site or a path relative to remoteApplicationRootDirectory
defined in sites.dat.
restrictedToUsers - comma separated list of user names. If the list is empty all users
may garner tool access. User restrictions are applied before group restrictions.
restrictedToGroups - comma separated list of group names. If the list is empty all groups
may garner tool access.
environment - comma separated list of environment variables in the form e=v.
remoteManager - tool specific multi-processor manager. Refers to definition in
managers.dat. Overrides value set by site definition.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a staged tool maintained in the yourhub account on a
remote site.

 35 / 49

INSTALLATION (DEBIAN 6/7)

[earth]
destinations = cluster
executablePath = ${HOME}/apps/planets/bin/earth.x
remoteManager = mpich-intel

[sun]
destinations = cluster
executablePath = ${HOME}/apps/stars/bin/sun.x
remoteManager = mpich-intel

Monitors

Remote job monitors are defined in the file monitors.dat. Each remote monitor is defined by a
stanza indicating where the monitor is located and to be executed. Defined keywords are

[name] - monitor name. Used in sites.dat (siteMonitorDesignator)
venue - hostname upon which to launch monitor daemon. Typically this is a cluster
headnode.
venueMechanism - monitoring job launch process. The default is ssh.
tunnelDesignator - name of tunnel defined in tunnels.dat.
remoteUser - login user at remote site.
remoteBinDirectory - define directory where shell scripts related to the site should be
kept.
remoteMonitorCommand - command to launch monitor daemon process.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a remote monitor tool used to report status of PBS jobs.

 36 / 49

INSTALLATION (DEBIAN 6/7)

[clusterPBS]
venue = cluster.campus.edu
remoteUser = yourhub
remoteMonitorCommand = ${HOME}/SubmitMonitor/monitorPBS.py

Multi-processor managers

Multiprocessor managers are defined in the file managers.dat. Each manager is defined by a
stanza indicating the set of commands used to execute a multiprocessor simulation run. Defined
keywords are

[name] - manager name. Used in sites.dat and tools.dat.
computationMode - indicate how to use multiple processors for a single job. Recognized
values are mpi, parallel, and matlabmpi. Parallel application request multiprocess have
there own mechanism for inter process communication. Matlabmpi is used to enable the
an Matlab implementation of MPI.
preManagerCommands - comma separated list of commands to be executed before the
manager command. Typical use of pre manager commands would be to define the
environment to include a particular version of MPI amd/or compiler, or setup MPD.
managerCommand - manager command commonly mpirun. It is possible to include
strings that will be sustituted with values defined from the command line.
postManagerCommands - comma separated list of commands to be executed when the
manager command completes. A typical use would be to terminate an MPD setup.
mpiRankVariable - define environment variable set by manager command to define
process rank. Recognized values are: MPIRUN_RANK, GMPI_ID, RMS_RANK,
MXMPI_ID, MSTI_RANK, PMI_RANK, and OMPI_MCA_ns_nds_vpid. If no variable is
given an attempt is made to determine process rank from command line arguments.
environment - comma separated list of environment variables in the form e=v.
moduleInitialize - initialize module script for sh
modulesUnload - modules to be unloaded clearing way for replacement modules
modulesLoad - modules to load to define mpi and other libraries
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a typical MPI instance. The given command should be

suitable for /bin/sh execution.

 37 / 49

INSTALLATION (DEBIAN 6/7)

[mpich-intel]
preManagerCommands = . ${MODULESHOME}/init/sh, module load mpich-
intel/11.1.038
managerCommand = mpirun -machinefile ${PBS_NODEFILE} -np NPROCESSORS

The token NPROCESSORS is replaced by an actual value at runtime.

File access controls

Application or file level access control is described by entries listed in the file appaccess.dat.
The ability to transfer files from the HUB to remote sites is granted on a group basis as defined
by white and black lists. Each list is given a designated priority and classification. In cases
where a file appears on multiple lists the highest priority takes precedence. Simple wildcard
operators are allowed the in the filename declaration allowing for easy listing of entire
directories. Each site lists acceptable classification(s) in sites.dat. Defined keywords are

>[group] - group name.
whitelist - comma separated list of paths. Wildcards allowed.
blacklist - comma separated list of paths. Wildcards allowed.
priority - higher priority wins
classification - apps or user. user class are treated are arbitrary executables.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example file giving permissions reminiscent of those defined in earlier submit releases is
presented here

[public]
whitelist = /apps/.*
priority = 0
classification = apps

[submit]
whitelist = ${HOME}/.*
priority = 0
classification = home

 38 / 49

INSTALLATION (DEBIAN 6/7)

The group public is intended to include all users. Your system may use a different group such
as users for this purpose. The definitions shown here allow all users access to files in /apps
where applications are published. Additionally members of the submit group are allowed to send
files from their $HOME directory.

Environment variables

Legal environment variables are listed in the file environmentwhitelist.dat. The objective is to
prevent end users from setting security sensitive environment variables while allowing
application specific variables to be passed to the remote site. Environment variables required to
define multiprocessor execution should also be included. The permissible environment variables
should be entered as a simple list - one entry per line. An example file allowing use of a
variables used by openmp and mpich is presenter here.

environment variables listed here can be specified from the command
line with -e/--env option. Attempts to specify other environment varia
bles will be ignored and the values will not be passed to the remote s
ite.

OMP_NUM_THREADS
MPICH_HOME

Tunnels

In some circumstances access to clusters is restricted such that only a select list of machines is
allowed to communicate with the cluster job submission node. The machines that are granted
such access are sometimes referred to as gateways. In such circumstances ssh tunneling or
port forwarding can be used to submit HUB jobs through the gateway machine. Tunnel
definition is specified in the file tunnels.dat. Each tunnel is defined by a stanza indicating
gateway host and port information. Defined keywords are

[name] - tunnel name.
venue - tunnel target host.
venuePort - tunnel target port.
gatewayHost - name of the intermediate host.
>gatewayUser - login user on gatewayHost.>
localPortOffset - local port offset used for forwarding. Actual port is localPortMinimum +
localPortOffset

 39 / 49

INSTALLATION (DEBIAN 6/7)

An example stanza is presented for a tunnel between the HUB and a remote venue by way of

an accepted gateway host.

[cluster]
venue = cluster.campus.edu
venuePort = 22
gatewayHost = gateway.campus.edu
gatewayUser = yourhub
localPortOffset = 1

Initialization Scripts and Log Files

The submit server and job monitoring server must be started as daemon processes running on
the the submit host. If ssh tunneling is going to be used an addition server must be started as a
daemon process. Each daemon process writes to a centralized log file facilitating error
recording and debugging.

Initialize daemon scripts

Scripts for starting the server daemons are provided and installed in /etc/init.d. The default
settings for when to start and terminate the scripts are adequate.

Log files

Submit processes log information to files located in the /var/log/submit directory tree. The exact
location varies depending on the vintage of the installation. Each process has its own log file.
The three most important log files are submit-server.log, distributor.log, and monitorJob.log.

 40 / 49

INSTALLATION (DEBIAN 6/7)

The rsyslog service is used to collect messages written to distributor.log. Using this service
avoids the necessity of making distributor.log world writable. To use rsyslog a couple of rules
must be addded to /etc/rsyslog.conf. The required rules are

###############
RULES
###############
local6.* /var/log/submit/distributor/distributor.log
local6.* ~

submit.log

The submit-server.log file tracks when the submit server is started and stopped. Each
connection from the submit client is logged with the command line and client ip address
reported. All log entries are timestamped and reported by submit-server process ID (PID) or
submit ID (ID:) once one has been assigned. Entries from all jobs are simultaneously reported
and intermingled. The submit ID serves as a good search key when tracing problems. Examples
of startup, job execution, and termination are given here. The job exit status and time metrics
are also recorded in the MyQSL database JobLog table.

[Sun Aug 26 17:28:24 2012] 0: ##
###########
[Sun Aug 26 17:28:24 2012] 0: Backgrounding process.
[Sun Aug 26 17:28:24 2012] 0: Listening: protocol='tcp', host='', port
=830

[Sun Sep 23 12:33:28 2012] (1154) ====================================
================
[Sun Sep 23 12:33:28 2012] (1154) Connection to tcp://:830 from ('192.
168.224.14', 38770)
[Sun Sep 23 12:33:28 2012] 0: Server will time out in 60 seconds.
[Sun Sep 23 12:33:28 2012] 0: Cumulative job load is 0.84. (Max: 510.
00)
[Sun Sep 23 12:33:28 2012] 1670: Args are:['/usr/bin/submit', '--local
', '-p', '@@iv=-3:1.5:3', '/home/hubzero/user/hillclimb/bin/hillclimb1
.py', '--seed', '10', '--initialvalue', '@@iv', '--lowerbound', '-3',
'--upperbound', '3', '--function', 'func2', '--solutionslog', 'solutio
ns.dat', '--bestresultlog', 'best.dat']
[Sun Sep 23 12:33:28 2012] 1670: Server stopping.

 41 / 49

INSTALLATION (DEBIAN 6/7)

[Sun Sep 23 12:33:28 2012] 1670: Server(JobExecuter) exiting(2).
[Sun Sep 23 12:33:38 2012] (1154) ====================================
================
[Sun Sep 23 12:33:38 2012] (1154) Connection to tcp://:830 from ('192.
168.224.14', 38774)
[Sun Sep 23 12:33:38 2012] 0: Server will time out in 60 seconds.
[Sun Sep 23 12:33:38 2012] 1670: Job Status: venue=1:local status=0 cp
u=0.030000 real=0.000000 wait=0.000000
[Sun Sep 23 12:33:38 2012] 1670: Job Status: venue=2:local status=0 cp
u=0.040000 real=0.000000 wait=0.000000
[Sun Sep 23 12:33:38 2012] 1670: Job Status: venue=3:local status=0 cp
u=7.050000 real=7.000000 wait=0.000000
[Sun Sep 23 12:33:38 2012] 1670: Job Status: venue=4:local status=0 cp
u=0.080000 real=0.000000 wait=0.000000
[Sun Sep 23 12:33:38 2012] 1670: Job Status: venue=5:local status=0 cp
u=0.020000 real=1.000000 wait=0.000000
[Sun Sep 23 12:33:38 2012] 1670: Job Status: venue= status=0 cpu=10.42
8651 real=9.561828 wait=0.000000
[Sun Sep 23 12:33:38 2012] 1670: Server(JobExecuter) exiting(0).
[Sun Sep 23 12:48:44 2012] (1154) ====================================
================

[Sun Aug 26 17:28:17 2012] 0: Server(10836) was terminated by a signal
 2.
[Sun Aug 26 17:28:17 2012] 0: Server(Listener) exiting(130).

distributor.log

The distributor.log file tracks each job as it progresses from start to finish. Details of remote site
assignment, queue status, exit status, and command execution are all reported. All entries are
timestamped and reported by submit ID. The submit ID serves as the key to join data reported
in submit-server.log. An example for submit ID 1659 is listed here. Again the data for all jobs are
intermingled.

[Sun Sep 23 00:04:21 2012] 0: quotaCommand = quota -w | tail -n 1
[Sun Sep 23 00:04:21 2012] 1659: command = tar vchf 00001659_01_input.
tar --exclude='*.svn*' -C /home/hubzero/user/data/sessions/3984L .__lo
cal_jobid.00001659_01 sayhiinquire.dax
[Sun Sep 23 00:04:21 2012] 1659: remoteCommand pegasus-
plan --dax ./sayhiinquire.dax

 42 / 49

INSTALLATION (DEBIAN 6/7)

[Sun Sep 23 00:04:21 2012] 1659: workingDirectory /home/hubzero/user/d
ata/sessions/3984L
[Sun Sep 23 00:04:21 2012] 1659: command = tar vrhf 00001659_01_input.
tar --exclude='*.svn*' -C /home/hubzero/user/data/sessions/3984L/00001
659/01 00001659_01.sh
[Sun Sep 23 00:04:21 2012] 1659: command = nice -n 19 gzip 00001659_01
_input.tar
[Sun Sep 23 00:04:21 2012] 1659: command = /opt/submit/bin/receiveinpu
t.sh /home/hubzero/user/data/sessions/3984L/00001659/01 /home/hubzero/
user/data/sessions/3984L/00001659/01/.__timestamp_transferred.00001659
_01
[Sun Sep 23 00:04:21 2012] 1659: command = /opt/submit/bin/submitbatch
job.sh /home/hubzero/user/data/sessions/3984L/00001659/01 ./00001659_0
1.pegasus
[Sun Sep 23 00:04:23 2012] 1659: remoteJobId = 2012.09.23 00:04:22.996
 EDT: Submitting job(s).
2012.09.23 00:04:23.002 EDT: 1 job(s) submitted to cluster 946.
2012.09.23 00:04:23.007 EDT:
2012.09.23 00:04:23.012 EDT: ---------------------------------------

2012.09.23 00:04:23.017 EDT: File for submitting this DAG to Condor
 : sayhi_inquire-0.dag.condor.sub
2012.09.23 00:04:23.023 EDT: Log of DAGMan debugging messages
 : sayhi_inquire-0.dag.dagman.out
2012.09.23 00:04:23.028 EDT: Log of Condor library output
 : sayhi_inquire-0.dag.lib.out
2012.09.23 00:04:23.033 EDT: Log of Condor library error messages
 : sayhi_inquire-0.dag.lib.err
2012.09.23 00:04:23.038 EDT: Log of the life of condor_dagman itself
 : sayhi_inquire-0.dag.dagman.log
2012.09.23 00:04:23.044 EDT:
2012.09.23 00:04:23.049 EDT: ---------------------------------------

2012.09.23 00:04:23.054 EDT:
2012.09.23 00:04:23.059 EDT: Your Workflow has been started and runs
 in base directory given below
2012.09.23 00:04:23.064 EDT:
2012.09.23 00:04:23.070 EDT: cd /home/hubzero/user/data/sessions/398
4L/00001659/01/work/pegasus
2012.09.23 00:04:23.075 EDT:
2012.09.23 00:04:23.080 EDT: *** To monitor the workflow you can run

2012.09.23 00:04:23.085 EDT:
2012.09.23 00:04:23.090 EDT: pegasus-status -l /home/hubzero/user/da
ta/sessions/3984L/00001659/01/work/pegasus
2012.09.23 00:04:23.096 EDT:

 43 / 49

INSTALLATION (DEBIAN 6/7)

2012.09.23 00:04:23.101 EDT: *** To remove your workflow run ***
2012.09.23 00:04:23.106 EDT: pegasus-remove /home/hubzero/user/data/
sessions/3984L/00001659/01/work/pegasus
2012.09.23 00:04:23.111 EDT:
2012.09.23 00:04:23.117 EDT: Time taken to execute is 0.993 seconds
[Sun Sep 23 00:04:23 2012] 1659: confirmation: S(1):N Job
[Sun Sep 23 00:04:23 2012] 1659: status:Job N WF-DiaGrid
[Sun Sep 23 00:04:38 2012] 1659: status:DAG R WF-DiaGrid
[Sun Sep 23 00:10:42 2012] 0: quotaCommand = quota -w | tail -n 1
[Sun Sep 23 00:10:42 2012] 1660: command = tar vchf 00001660_01_input.
tar --exclude='*.svn*' -C /home/hubzero/clarksm .__local_jobid.0000166
0_01 noerror.sh
[Sun Sep 23 00:10:42 2012] 1660: remoteCommand ./noerror.sh
[Sun Sep 23 00:10:42 2012] 1660: workingDirectory /home/hubzero/clarks
m
[Sun Sep 23 00:10:42 2012] 1660: command = tar vrhf 00001660_01_input.
tar --exclude='*.svn*' -C /home/hubzero/clarksm/00001660/01 00001660_0
1.sh
[Sun Sep 23 00:10:42 2012] 1660: command = nice -n 19 gzip 00001660_01
_input.tar
[Sun Sep 23 00:10:42 2012] 1660: command = /opt/submit/bin/receiveinpu
t.sh /home/hubzero/clarksm/00001660/01 /home/hubzero/clarksm/00001660/
01/.__timestamp_transferred.00001660_01
[Sun Sep 23 00:10:42 2012] 1660: command = /opt/submit/bin/submitbatch
job.sh /home/hubzero/clarksm/00001660/01 ./00001660_01.condor
[Sun Sep 23 00:10:42 2012] 1660: remoteJobId = Submitting job(s).
1 job(s) submitted to cluster 953.
[Sun Sep 23 00:10:42 2012] 1660: confirmation: S(1):N Job
[Sun Sep 23 00:10:42 2012] 1660: status:Job N DiaGrid
[Sun Sep 23 00:11:47 2012] 1660: status:Simulation I DiaGrid
[Sun Sep 23 00:12:07 2012] 1660: Received SIGINT!
[Sun Sep 23 00:12:07 2012] 1660: waitForBatchJobs: nCompleteRemoteJobI
ndexes = 0, nIncompleteJobs = 1, abortGlobal = True
[Sun Sep 23 00:12:07 2012] 1660: command = /opt/submit/bin/killbatchjo
b.sh 953.0 CONDOR
[Sun Sep 23 00:12:07 2012] 1660: Job 953.0 marked for removal

[Sun Sep 23 00:12:07 2012] 1660: status:Simulation I DiaGrid
[Sun Sep 23 00:12:52 2012] 1660: status:Simulation D DiaGrid
[Sun Sep 23 00:12:52 2012] 1660: venue=1:localCONDOR:953.0:DiaGrid sta
tus=258 cputime=0.000000 realtime=0.000000 waittime=0.000000 ncpus=1
[Sun Sep 23 00:28:14 2012] 1659: status:DAG D WF-DiaGrid
[Sun Sep 23 00:28:14 2012] 1659: waitForBatchJobs: nCompleteRemoteJobI
ndexes = 1, nIncompleteJobs = 0, abortGlobal = False
[Sun Sep 23 00:28:14 2012] 1659: command = /opt/submit/bin/cleanupjob.
sh /home/hubzero/user/data/sessions/3984L/00001659/01

 44 / 49

INSTALLATION (DEBIAN 6/7)

[Sun Sep 23 00:28:15 2012] 1659:
SUMMARY***************

Job instance statistics : /home/hubzero/user/data/sessions/3
984L/00001659/01/work/pegasus/statistics/jobs.txt

**

[Sun Sep 23 00:28:15 2012] 1659: venue=1:localPEGASUS:946.0:WF-DiaGrid
 status=0 cputime=1.430000 realtime=2.000000 waittime=0.000000 ncpus=1
[Sun Sep 23 00:28:15 2012] 1659: venue=2:PEGASUS:952.0:DiaGrid status=
0 cputime=0.003000 realtime=0.000000 waittime=681.000000 ncpus=1 event
=/sayhi_inquire-sayhi-1.0
[Sun Sep 23 00:28:15 2012] 1659: venue=3:PEGASUS:954.0:DiaGrid status=
0 cputime=0.003000 realtime=0.000000 waittime=631.000000 ncpus=1 event
=/sayhi_inquire-inquire-1.0

monitorJob.log

The monitorJob.log file tracks the invocation and termination of each remotely executed job
monitor. The remote job monitors are started on demand when job are submitted to remote
sites. The remote job monitors terminate when all jobs complete at a remote site and no new
activity has been initiated for a specified amount of time - typically thirty minutes. A typical report
should look like:

[Sun Aug 26 17:29:16 2012] (1485) ***********************************
[Sun Aug 26 17:29:16 2012] (1485) * distributor job monitor started *
[Sun Aug 26 17:29:16 2012] (1485) ***********************************
[Sun Aug 26 17:29:16 2012] (1485) loading active jobs
[Sun Aug 26 17:29:16 2012] (1485) 15 jobs loaded from DB file
[Sun Aug 26 17:29:16 2012] (1485) 15 jobs loaded from dump file
[Sun Aug 26 17:29:16 2012] (1485) 4 jobs purged
[Sun Aug 26 17:29:16 2012] (1485) 11 monitored jobs
[Sun Aug 26 18:02:04 2012] (24250) Launching wf-diagrid
[Sun Aug 26 18:02:04 2012] (1485) 12 monitored jobs
[Sun Aug 26 18:02:15 2012] (1485) Update message received from wf-
diagrid
[Sun Aug 26 18:03:15 2012] (1485) Update message received from wf-
diagrid
[Sun Aug 26 18:06:43 2012] (1485) 13 monitored jobs
...

 45 / 49

INSTALLATION (DEBIAN 6/7)

[Thu Sep 17 17:32:51 2011] (21095) Received SIGTERM!
[Thu Sep 17 17:32:51 2011] (21095) Send TERM to child ssh process
[Thu Sep 17 17:32:51 2011] (21095) distributor site monitor stopped
[Thu Sep 17 17:32:51 2011] (17348) Send TERM to child site steele proc
ess
[Thu Sep 17 17:32:51 2011] (17348) ***********************************
[Thu Sep 17 17:32:51 2011] (17348) * distributor job monitor stopped *
[Thu Sep 17 17:32:51 2011] (17348) ***********************************

It is imperative that the job monitor be running in order for notification of job progress to occur. If
users report that their job appears to hang check to make sure the job monitor is running. If
necessary take corrective action and restart the daemon.

monitorTunnel.log

The monitorTunnel.log file tracks invocation and termination of each ssh tunnel connection. If
users report problems with job submission to sites accessed via an ssh tunnel this log file
should be checked for indication of any possible problems.

Remote Domain Configuration

For job submission to remote sites via ssh it is necessary to configure a remote job monitor and
a set of scripts to perform file transfer and batch job related functions. A set of scripts can be
used for each different batch submission system or in some cases they may be combined with
appropriate switching based on command line arguments. A separate job monitor is need for
each batch submission system. Communication between the HUB and remote resource via ssh

requires inclusion of a public key in the authorized_keys file.

 46 / 49

INSTALLATION (DEBIAN 6/7)

Job monitor daemon

A remote job monitor runs a daemon process and reports batch job status to a central job
monitor located on the HUB. The daemon process is started by the central job monitor on
demand. The daemon terminates after a configurable amount of inactivity time. The daemon
code needs to be installed in the location declared in the monitors.dat file. The daemon requires
some initial configuration to declare where it will store log and history files. The daemon does
not require any special privileges any runs as a standard user. Typical configuration for the
daemon looks like this:

The directory defined by MONITORLOGLOCATION needs to be created before the daemon is
started. Sample daemon scripts used for PBS, LSF, SGE, Condor, Load Leveler, and Slurm
batch systems are included in directory BatchMonitors.

File transfer and batch job scripts

The simple scripts are used to manage file transfer and batch job launching and termination.
The location of the scripts is entered in sites.dat.

Examples scripts suitable for use with PBS, LSF, Condor, Load Leveler, and Slurm are included
in directory Scripts. After modifications are made to monitors.dat the central job monitor must be
notified. This can be accomplished by stopping and starting the submon daemon or a HUP
signal can be sent to the monitorJob.py process.

File transfer - input files

Receive compressed tar file containing input files required for the job on stdin. The file
transferredTimestampFile is used to determine what newly created or modified files should be
returned to the HUB.

receiveinput.sh jobWorkingDirectory jobScratchDirectory transferredTi
mestampFile

Batch job script - submission

Submit batch job using supplied description file. If arguments beyond job working directory and
batch description file are supplied an entry is added to the remote site log file. The log file
provides a record relating the HUB end user to the remote batch job identifier. The log file
should be placed at a location agreed upon by the remote site and HUB.

submitbatchjob.sh jobWorkingDirectory jobScratchDirectory jobDescripti

 47 / 49

INSTALLATION (DEBIAN 6/7)

onFile

The jobId is returned on stdout if job submission is successful. For an unsuccessful job
submission the returned jobId should be -1.

File transfer - output files

Return compressed tar file containing job output files on stdout.

transmitresults.sh jobWorkingDirectory

File transfer - cleanup

Remove job specific directory and any other dangling files

cleanupjob.sh jobWorkingDirectory jobScratchDirectory jobClass

Batch job script - termination

Terminate given remote batch job. Command line arguments specify job identifier and batch
system type.

killbatchjob.sh jobId jobClass

Batch job script - post process

For some jobClassses it is appropriate to preform standard post processing actions. An
example of such a jobClass is Pegasus.

postprocessjob.sh jobWorkingDirectory jobScratchDirectory jobClass

Access Control Mechanisms

By default tools and sites are configured so that access is granted to all HUB members. In some
cases it is desired to restrict access to either a tool or site to a subset of the HUB membership.
The keywords restrictedToUsers and restrictedToGroups provide a mechanism to apply
restrictions accordingly. Each keyword should be followed by a list of comma separated values

 48 / 49

INSTALLATION (DEBIAN 6/7)

of userids (logins) or groupids (as declared when creating a new HUB group). If user or group
restrictions have been declared upon invocation of submit a comparison is made between the
restrictions and userid and group memberships. If both user and group restrictions are declared
the user restriction will be applied first, followed by the group restriction.

In addition to applying user and group restrictions another mechanism is provided by the
executableClassificationsAllowed keyword in the sites configuration file. In cases where the
executable program is not pre-staged at the remote sites the executable needs to be transferred
along with the user supplied inputs to the remote site. Published tools will have their executable
program located in the /apps/tools/revision/bin directory. For this reason submitted programs
that reside in /apps are assumed to be validated and approved for execution. The same cannot
be said for programs in other directories. The common case where such a situation arises is
when a tool developer is building and testing within the HUB workspace environment. To grant a
tool developer the permission to submit such arbitrary applications the site configuration must
allow arbitrary executables and the tool developer must be granted permission to send files from
their $HOME directory. Discrete permission can be granted on a file by file basis in
appaccess.dat.

Powered by TCPDF (www.tcpdf.org)

 49 / 49

http://www.tcpdf.org

