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Overview

The JTable class is an implementation of the Active Record design pattern. It is used
throughout Joomla! for creating, reading, updating, and deleting records in the database table.  

When properly extended, JTable gives you all of the basic functions you need for managing and
retrieving records in a database table. Member functions take care of the rest when you add
member variables, the table name, and the key column.  

Writing an extension of JTable

To use JTable, create an extension of the class. In this example, we have a database table
containing recipes. 

<?php

defined('_JEXEC') or die();

class KitchenTableRecipes extends JTable
{
 public function __construct(&$db)
 {
  parent::__construct( '#__recipes', 'id', $db );
 }
}

When naming your class extension, the convention is to prefix it with 'Table', then follow with a
CamelCased version of the table's name. Unlike previous versions, it is NOT necessary to list
all of the member variables of your class that match the column names in the database. The
table columns are defined from the database schema. 

Finally, create a constructor for the class that accepts a reference to the current database
instance. This will call the parent constructor which needs the name of the table, the name of
the primary key column, and the database instance. The name of the table uses #__ instead of
jos_, as the administrator can pick any table prefix desired during Joomla! installation. 

If you were using this class as a part of a component called 'Kitchen', you would place this code
in the file /administrator/components/com_kitchen/tables/recipes.php. 
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Using a JTable class extension

Once the table class is in place, you can use it in any Joomla! extension. To include the file,
place this line in your extension's source code (use com_nameofyourcomponent in place of
com_recipes): 

JTable::addIncludePath(JPATH_ADMINISTRATOR.DS.'components'.DS.'com_rec
ipes'.DS.'tables');

To get an instance of the object, use this code: 

$row =& JTable::getInstance('recipes', 'Table');

Notice that the lowercase version of the suffix of your class name is used as the first parameter,
with the prefix 'Table' as the second. Also, the getInstance() member function of JTable returns
the object by reference instead of value. 

In a model class (extends JModel) you can also use: 

$row =& $this->getTable('recipes');

Notice that if you have not used the standard naming convention, you can supply the class
prefix as the optional second parameter. 

Create/Update

In a typical situation, you will have an HTML form submitted by the user which PHP will interpret
for you as an associative array. The JRequest class in Joomla! has functions ready to assist
with retrieving this data safely. Use JRequest::get('post') to retrieve all of the elements in the
HTTP POST request as a sanitized array. 

Once you have this array, you can pass it into the bind() method of JTable. Doing this will match
the associated items of the array with member variables of the class. In the following example,
the array is retrieved from JRequest::get('post') and immediately passed into bind(). 

if (!$row->bind( JRequest::get( 'post' ) ))
{
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 return JError::raiseWarning( 500, $row->getError() );
}

If bind() fails, you want to stop the application and explain the failure before your extension
attempts to send the data. The raiseWarning() function of JError allows you to stop Joomla!,
while the getError() function returns the error message stored in the JTable object. 

When binding succeeds and your object is ready, call the store() function. Again, if something
goes wrong, stop the application and explain why. 

if (!$row->store())
{
 JError::raiseError(500, $row->getError() );
}

Note:

If any member variables of your JTable object are null when store() is called, they are
ignored by default. This allows you to update specific columns of your table, while
leaving the others untouched. If you wish to override this behavior to ensure that all
columns have a value, pass true into store().
The JTable::bind() and JRequest::get() functions do not enforce data types. If you need
a column to be a specific type (for instance, integer), you need to add this logic to your
code before calling store().

Read

To load a specific row of the database with JTable, pass the key into the load() member
function. 

$row->load( $id );

This relies on the key column you specified in the second parameter of parent::__construct()
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when you extended JTable. 

Delete

Like read(), delete() allows you to destroy a specific row in the table based on the key specified
earlier. 

$row->delete( $id );

If you want to delete multiple rows at once, you will need to write the query manually. 
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