
WEB DEVELOPERS

Web Developers

Written in a book format, it contains the information a developer needs to not only understand
and use HUBzero components but build extensions for a HUBzero installation. Developers will
learn how to use common objects, available code libraries and utilities, and distinguish between
and develop the following kinds of extensions:

Components
Modules
Plugins
Templates

 1 / 225

/documentation/1.2.0/webdevs/components
/documentation/1.2.0/webdevs/modules
/documentation/1.2.0/webdevs/plugins
/documentation/1.2.0/webdevs/templates

WEB DEVELOPERS

Introduction

Getting Started

As a developer you are tasked with altering or extending the functionality of a HUBzero install or
one of its extensions. You will need to be proficient in PHP and have some familiarity with such
things as JavaScript or CSS. If you are new to HUBzero, this reference should help guide you
through the creation of extensions such as modules and widgets (more on those later).
Thankfully, the requirements for getting started creating HUBzero extensions are minimal:
knowledge of programming in PHP and a good text editor. While those are the only
requirements we do, however, recommend you have working knowledge of the following:

(X)HTML
Cascading Stylesheets (CSS)
JavaScript (familiarity with the jQuery framework is a plus)
XML
Model-View-Controller (MVC) design pattern
Object-Oriented Programming

 2 / 225

http://jquery.com

WEB DEVELOPERS

Installation

Directories & File Structure

The initial directory structure of a HUBzero install.

/hubzero
 /administrator
 /cache
 /components
 /images
 /includes
 /language
 /libraries
 /logs
 /media
 /modules
 /plugins
 /site
 /templates
 /tmp
 /xmlrpc
 configuration.php
 index.php
 index2.php
 htaccess.txt
 robots.txt

While this looks very much like a typical Joomla! 1.5 install, there are some noticeable
exceptions. Some directories vital to HUBzero functionality have been added. A quick
explanation of the additional directories:

/site
This is where HUB specific data such as member pictures, files used in wiki pages, etc.
is stored.

 3 / 225

WEB DEVELOPERS

Accessing Files

Accessing via SSH

The following tutorial should help you in using SSH to connect to and from your HUBzero
server(s). You should be relatively comfortable with using a terminal (also referred to as a
"command-line tool") to navigate directories and manipulate files.

Warning: Most accounts do not have SSH/sFTP access initially. Your system administrator
must grant your account access before you will be able to connect.

From a terminal type ssh <user>@<host>. You will then be prompted for a password. Both the
username and password will typically be the same as the account you registered on <host>.

yourmachine:~ you$ ssh username@host
yourmachine:~ you$ username@host password:

host ~

Windows Clients

PuTTY (a Telnet and SSH client)

Mac OSX

All versions of Mac OSX come with Terminal.app which may be found in the /Utilities directory
of your /Applications directory.

Accessing via sFTP

sFTP, or secure FTP, is a program that uses SSH to transfer files. Unlike standard FTP, it
encrypts both commands and data, preventing passwords and sensitive information from being
transmitted in the clear over the network. It is functionally similar to FTP, but because it uses a
different protocol, you can't use a standard FTP client to talk to an sFTP server, nor can you
connect to an FTP server with a client that supports only sFTP.

The following tutorial should help you in using sFTP to connect to and from your HUBzero
server(s).

Warning: Most accounts do not have SSH/sFTP access initially. Your system administrator

 4 / 225

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

WEB DEVELOPERS

must grant your account access before you will be able to connect.

Graphical Clients

Using graphical SFTP clients simplifies file transfers by allowing you to transmit files simply by
dragging and dropping icons between windows. When you open the program, you will have to
enter the name of the host (e.g., yourhub.org) and your HUB username and password.

Windows Clients

WinSCP
BitKinex
FileZilla
PuTTY

Mac OSX Clients

Transmit
Fetch
Cyberduck
Flow
Fugu

Command-line

You can use command line SFTP from your Unix account, or from your Mac OS X or Unix
workstation. To start an SFTP session, at the command prompt, enter:

yourmachine:~ you$ sftp username@host
yourmachine:~ you$ username@host password:

host ~

Some standard commands for command-line sFTPCommand Description
cd Change the directory on the remote computer
chmod Change the permissions of files on the remote

computer
chown Change the owner of files on the remote

computer
dir (or ls) List the files in the current directory on the

remote computer
exit (or quit) Close the connection to the remote computer

and exit SFTP
get Copy a file from the remote computer to the

local computer

 5 / 225

http://winscp.net/
http://www.bitkinex.com/sftpclient/
http://filezilla-project.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.panic.com/transmit/
http://fetchsoftworks.com/
http://cyberduck.ch/
http://extendmac.com/flow/
http://rsug.itd.umich.edu/software/fugu/

WEB DEVELOPERS

Command Description
help (or ?) Get help on the use of SFTP commands
lcd Change the directory on the local computer
lls See a list of the files in the current directory on

the local computer
lmkdir Create a directory on the local computer
ln (or symlink) Create a symbolic link for a file on the remote

computer
lpwd Show the current directory (present working

directory) on the local computer
lumask Change the local umask value
mkdir Create a directory on the remote computer
put Copy a file from the local computer to the

remote computer
pwd Show the current directory (present working

directory) on the remote computer
rename Rename a file on the remote host
rm Delete files from the remote computer
rmdir Remove a directory on the remote host (the

directory usually has to be empty)
version Display the SFTP version
 ! In Unix, exit to the shell prompt, where you can

enter commands. Enter exit to get back to
SFTP. If you follow ! with a command (e.g.,
!pwd), SFTP will execute the command without
dropping you to the Unix prompt.

Finding Files

Once connected to a server, by either sFTP or directly with SSH, you will need to find the web
root which contains the HUB install. The web root for the production version of a HUB can be
found at /www/yourhub. Typically, HUBs will also have a development version of a HUB, which
can be found at /www/dev.

Once in the desired directory, file layout and directory structure follows Joomla! 1.5 conventions
unless otherwise noted.

See the Installation overview for details on a typical HUBzero install's directory structure.

 6 / 225

documentation/1.2.0/webdevs/index/installation

WEB DEVELOPERS

Direct Database Access

Accessing via command-line

The following tutorial should help you in using SSH to connect to and from your HUBzero
server(s) and access the database. You should be relatively comfortable with using a terminal
(also referred to as a "command-line tool") to navigate directories and manipulate files.

Warning: Most accounts do not have SSH/sFTP access initially. Your system administrator
must grant your account access before you will be able to connect.

See Accessing Files for further details on how to use SSH.

 7 / 225

/documentation/1.2.0/webdevs/index/fileaccess

WEB DEVELOPERS

Libraries

Hubzero

Location:

/libraries/Hubzero

The Hubzero library contains code that is essential for a hub to run properly and altering or
adding to the library without Hubzero approval is strongly discouraged.

File Formatting

For files that contain only PHP code, the closing tag ("?>") is omitted. It is not required by PHP,
and omitting it prevents the accidental injection of trailing white space into the response.

Class Names

Class names may only contain alphanumeric characters. Numbers are permitted in class names
but are discouraged in most cases. Underscores are only permitted in place of the path
separator; the filename "/libraries/Hubzero/User/Helper.php" must map to the class name
"Hubzero_User_Helper".

If a class name is comprised of more than one word, the first letter of each new word must be
capitalized. Successive capitalized letters are not allowed, e.g. a class "Hubzero_PDF" is not
allowed while "Hubzero_Pdf" is acceptable.

Note: Code deployed alongside Hubzero libraries must never start with "Hubzero_".

Filenames

Hubzero standardizes on a class naming convention whereby the names of the classes directly
map to the directories in which they are stored. The root level directory of Hubzero's standard
library is the "/libraries/Hubzero" directory. All Hubzero classes are stored hierarchically under
this root directory.

For all other files, only alphanumeric characters, underscores, and the dash character ("-") are
permitted. Spaces are strictly prohibited.

File names must map to class names as described above.

 8 / 225

WEB DEVELOPERS

Debugging

Joomla's Debugging Mode

To turn on Joomla!'s Debug mode:

Login to the Joomla administration e.g. http:/YOURSITE/administrator/
At the top under the Site menu click Global Configuration.
Click the System tab.
Under the Debug Settings section change Debug System to Yes.
Click the Save button.

Debug mode will output a list of all queries that were executed in order to generate the page.
This will also turn on a stack trace output for error and warning pages. Hubzero components will
also have PHP error reporting turned on, allowing one to see any PHP errors that may be
present.

Note: Turning on debugging mode for production (live) sites is strongly discouraged and it is
recommended to be avoided if at all possible.

Restricting who sees debug output

Since debug mode can contain potentially sensitive, it is strongly recommended that access to
debug output is restricted to the administrator or super administrator user access levels and/or a
defined list of users.

To restrict:

Login to the Joomla administration e.g. http:/YOURSITE/administrator/
At the top under the Extensions menu click Plugin Manager.
Select System from the "Select Type" drop-down.
Find the debug plugin, typically titled "System - Debug", and click to edit.
Under the Parameters section select the Allowed Groups and/or enter a comma-
seprated list of usernames into the Allows Users box.
Click the Save button.

Illegal variable ... passed to script.

One encounters the following error:

Illegal variable _files or _env or _get or _post or _cookie or _server or _session or globals
passed to script.

This error is generated when the key of a key-value pair is numeric in one of the following

 9 / 225

WEB DEVELOPERS

variables: _files or _env or _get or _post or _cookie or _server or _session or globals. An
example of this would be $_POST[5] = 'value'. This is most often generated by having form
elements with numeric values as names. For example:

<input type="text" name="5" />

As the error indicates, this is not allowed. Element names must include at least one non-
numeric character. Examples:

<input type="text" name="n5" />

<input type="text" name="n_5" />

 10 / 225

WEB DEVELOPERS

Coding Styles and Conventions

Overview

This document provides guidelines for code formatting and documentation to individuals and
teams contributing to HUBzero CMS.

Topics covered:

PHP File Formatting
PHP and Database Naming Conventions
PHP, CSS Coding Style
PHP Inline Documentation

 11 / 225

WEB DEVELOPERS

PHP Coding Styles

Code Demarcation

PHP code must always be delimited by the full-form, standard PHP tags:

<?php

?>

Short tags are never allowed.

For files that contain only PHP code, the closing tag (”?>”) is never permitted. It is not required
by PHP, and omitting it prevents the accidental injection of trailing white space into the
response.

Indention

Indentation should consist of 1 tab per indentation level. Spaces are not allowed.

Line Length

The target line length is 120 characters. Longer lines are acceptable as long as readability is
maintained.

Line Termination

Line termination follows the Unix text file convention. Lines must end with a single linefeed (LF)
character. Linefeed characters are represented as ordinal 10, or hexadecimal 0×0A.

Note: Do not use carriage returns (CR) as is the convention in Apple OS’s (0×0D) or the
carriage return – linefeed combination (CRLF) as is standard for the Windows OS (0×0D,
0×0A).

Strings

 String Literals

 12 / 225

WEB DEVELOPERS

When a string is literal (contains no variable substitutions), the apostrophe or “single quote”
should always be used to demarcate the string:

$a = 'Example String';

 String Literals Containing Apostrophes

When a literal string itself contains apostrophes, it is permitted to demarcate the string with
quotation marks or “double quotes”. This is especially useful for SQL statements:

$sql = "SELECT `id`, `name` from `people` "
 . "WHERE `name`='Fred' OR `name`='Susan'";

This syntax is preferred over escaping apostrophes as it is much easier to read.

 Variable Substitution

Variable substitution is permitted using either of these forms:

$greeting = "Hello $name, welcome back!";

$greeting = "Hello {$name}, welcome back!";

For consistency, this form is not permitted:

$greeting = "Hello ${name}, welcome back!";

 String Concatenation

Strings must be concatenated using the “.” operator. A space must always be added before
and after the “.” operator to improve readability:

$company = 'HUBzero' . ' ' . 'content management system';

 13 / 225

WEB DEVELOPERS

When concatenating long strings with the “.” operator, it is encouraged to break the statement
into multiple lines to improve readability. In these cases, each successive line should be padded
with white space such that the “.”; operator is aligned under the “=” operator:

$sql = "SELECT `id`, `name` FROM `users` "
 . "WHERE `name` = 'Jim' "
 . "ORDER BY `name` ASC ";

Arrays

 Numerically Indexed Arrays

Negative numbers are not permitted as indices.

An indexed array may start with any non-negative number, however all base indices besides 0
are discouraged.

When declaring indexed arrays with the Array function, a trailing space must be added after
each comma delimiter to improve readability:

$sampleArray = array(1, 2, 3, 'HUBzero');

It is permitted to declare multi-line indexed arrays using the “array” construct. In this case, each
successive line must be indented to the same level as first line and then padded with spaces
such that beginning of each line is aligned:

$sampleArray = array(1, 2, 3, 'HUBzero',
 $a, $b, $c,
 56.44, $d, 500);

Alternately, the initial array item may begin on the following line. If so, it should be padded at
one indentation level greater than the line containing the array declaration, and all successive
lines should have the same indentation; the closing paren should be on a line by itself at the
same indentation level as the line containing the array declaration:

$sampleArray = array(
 1, 2, 3, 'HUBzero',
 $a, $b, $c,

 14 / 225

WEB DEVELOPERS

 56.44, $d, 500,
);

When using this latter declaration, we encourage using a trailing comma for the last item in the
array; this minimizes the impact of adding new items on successive lines, and helps to ensure
no parse errors occur due to a missing comma.

 Associative Arrays

When declaring associative arrays with the Array construct, breaking the statement into multiple
lines is encouraged. In this case, each successive line must be padded with white space such
that both the keys and the values are aligned:

$sampleArray = array('firstKey' => 'firstValue',
 'secondKey' => 'secondValue');

Alternately, the initial array item may begin on the following line. If so, it should be padded at
one indentation level greater than the line containing the array declaration, and all successive
lines should have the same indentation; the closing paren should be on a line by itself at the
same indentation level as the line containing the array declaration. For readability, the various
“=>” assignment operators should be padded such that they align.

$sampleArray = array(
 'firstKey' => 'firstValue',
 'secondKey' => 'secondValue',
);

When using this latter declaration, we encourage using a trailing comma for the last item in the
array; this minimizes the impact of adding new items on successive lines, and helps to ensure
no parse errors occur due to a missing comma.

Classes

Classes must be named according to HUBzero’s naming conventions.

The brace should always be written on the line underneath the class name.

 15 / 225

WEB DEVELOPERS

Every class must have a documentation block that conforms to the PHPDocumentor standard.

All code in a class must be indented with a single tab.

Only one class is preferred in each PHP file. Additional classes are permitted but strongly
discouraged.

Placing additional code in class files is permitted but discouraged.

The following is an example of an acceptable class declaration:

/**
* Documentation Block Here
*/
class SampleClass
{
 // all contents of class
 // must be indented
}

Classes that extend other classes or which implement interfaces should declare their
dependencies on the same line when possible.

class SampleClass extends FooAbstract implements BarInterface
{
}

If as a result of such declarations, readability suffers due to line length, break the line before the
“extends” and/or “implements” keywords, and pad those lines by one indentation level.

class SampleClass
 extends FooAbstract
 implements BarInterface
{
}

If the class implements multiple interfaces and the declaration covers multiple lines, break after

 16 / 225

WEB DEVELOPERS

each comma separating the interfaces, and indent the interface names such that they align.

class SampleClass
 implements BarInterface,
 BazInterface
{
}

 Class Member Variables

Member variables must be named according to HUBzero’s variable naming conventions.

Any variables declared in a class must be listed at the top of the class, above the declaration of
any methods.

The var construct is permitted but discouraged. Member variables should declare their visibility
by using one of the private, protected, or public modifiers. Giving access to member variables
directly by declaring them as public is permitted but discouraged in favor of accessor methods
(set & get).

Functions

 Declaration

Functions must be named according to HUBzero’s function naming conventions.

Methods inside classes must always declare their visibility by using one of the private,
protected, or public modifiers.

As with classes, the brace should always be written on the line underneath the function name.
Space between the function name and the opening parenthesis for the arguments is not
permitted.

Functions in the global scope are strongly discouraged.

The following is an example of an acceptable function declaration in a class:

/**
* Documentation Block Here
*/
class Foo
{

 17 / 225

WEB DEVELOPERS

 /**
 * Documentation Block Here
 */
 public function bar()
 {
 // all contents of function
 // must be indented four spaces
 }
}

In cases where the argument list affects readability, you may introduce line breaks. Additional
arguments to the function or method must be indented one additional level beyond the function
or method declaration. The following is an example of one such situation:

/**
* Documentation Block Here
*/
class Foo
{
 /**
 * Documentation Block Here
 */
 public function bar($arg1, $arg2, $arg3,
 $arg4, $arg5, $arg6)
 {
 // all contents of function
 // must be indented four spaces
 }
}

Note: Pass-by-reference is the only parameter passing mechanism permitted in a method
declaration.

/**
* Documentation Block Here
*/
class Foo
{
 /**
 * Documentation Block Here

 18 / 225

WEB DEVELOPERS

 */
 public function bar(&$baz)
 {
 }
}

Call-time pass-by-reference is strictly prohibited.

The return value must not be enclosed in parentheses. This can hinder readability, in additional
to breaking code if a method is later changed to return by reference.

/**
* Documentation Block Here
*/
class Foo
{
 /**
 * WRONG
 */
 public function bar()
 {
 return($this->bar);
 }

 /**
 * RIGHT
 */
 public function bar()
 {
 return $this->bar;
 }
}

 Function and Method Usage

Function arguments should be separated by a single trailing space after the comma delimiter.
The following is an example of an acceptable invocation of a function that takes three
arguments:

threeArguments(1, 2, 3);

 19 / 225

WEB DEVELOPERS

Call-time pass-by-reference is strictly prohibited. See the function declarations section for the
proper way to pass function arguments by-reference.

In passing arrays as arguments to a function, the function call may include the “array” hint and
may be split into multiple lines to improve readability. In such cases, the normal guidelines for
writing arrays still apply:

threeArguments(array(1, 2, 3), 2, 3);

threeArguments(array(1, 2, 3, 'HUBzero',
 $a, $b, $c,
 56.44, $d, 500), 2, 3);

threeArguments(array(
 1, 2, 3, 'HUBzero',
 $a, $b, $c,
 56.44, $d, 500
), 2, 3);

Control Statements

 If/Else/Elseif

Control statements based on the if and else if constructs must have a single space before the
opening parenthesis of the conditional.

Within the conditional statements between the parentheses, operators must be separated by
spaces for readability. Inner parentheses are encouraged to improve logical grouping for larger
conditional expressions.

The opening brace is written on the line after the conditional statement. The closing brace is
always written on its own line. Any content within the braces must be indented using 1 tab.

if ($a != 2)
{
 $a = 2;
}

 20 / 225

WEB DEVELOPERS

If the conditional statement causes the line length to affect readability and has several clauses,
you may break the conditional into multiple lines. In such a case, break the line prior to a logic
operator, and pad the line such that it aligns under the first character of the conditional clause.
The closing paren in the conditional will then be placed on a line with the opening brace, with
one space separating the two, at an indentation level equivalent to the opening control
statement.

if (($a == $b)
 && ($b == $c)
 || (Foo::CONST == $d))
{
 $a = $d;
}

The intention of this latter declaration format is to prevent issues when adding or removing
clauses from the conditional during later revisions.

For if statements that include else if or else, the formatting conventions are similar to the if
construct. The following examples demonstrate proper formatting for if statements with else
and/or {else if constructs:

if ($a != 2)
{
 $a = 2;
}
else
{
 $a = 7;
}

if ($a != 2)
{
 $a = 2;
}
elseif ($a == 3)
{
 $a = 4;
}
else
{
 $a = 7;
}

 21 / 225

WEB DEVELOPERS

if (($a == $b)
 && ($b == $c)
 || (Foo::CONST == $d))
{
 $a = $d;
}
elseif (($a != $b)
 || ($b != $c))
{
 $a = $c;
}
else
{
 $a = $b;
}

PHP allows statements to be written without braces in some circumstances. This is not
permitted; all if, else if or else statements must use braces.

 Switch

Control statements written with the switch statement must have a single space before the
opening parenthesis of the conditional statement and after the closing parenthesis.

All content within the switch statement must be indented one indention level. Content under
each case statement must be indented using an additional indention level.

switch ($numPeople)
{
 case 1:
 break;

 case 2:
 break;

 default:
 break;
}

The construct default should not be omitted from a switch statement.

 22 / 225

WEB DEVELOPERS

Note: It is sometimes useful to write a case statement which falls through to the next case by
not including a break or return within that case. To distinguish these cases from bugs, any case
statement where break or return are omitted should contain a comment indicating that the break
was intentionally omitted.

Inline Documentation

 Format

All documentation blocks (“docblocks”) must be compatible with the phpDocumentor format.
Describing the phpDocumentor format is beyond the scope of this document. For more
information, visit: [1]

All class files must contain a “file-level” docblock at the top of each file and a “class-level”
docblock immediately above each class.

 Files

Every file that contains PHP code must have a docblock at the top of the file that contains these
phpDocumentor tags at a minimum:

/**
 * @package hubzero-cms
 * @author Joe Smith <joesmith@hubzero.org>
 * @copyright Copyright 2005-2011 Purdue University. All rights rese
rved.
 * @license http://www.gnu.org/licenses/lgpl-3.0.html LGPLv3
 *
 * Copyright 2005-2011 Purdue University. All rights reserved.
 *
 * This file is part of: The HUBzero(R) Platform for Scientific Collab
oration
 *
 * The HUBzero(R) Platform for Scientific Collaboration (HUBzero) is f
ree
 * software: you can redistribute it and/or modify it under the terms
of
 * the GNU Lesser General Public License as published by the Free Soft
ware
 * Foundation, either version 3 of the License, or (at your option) an
y
 * later version.
 *
 * HUBzero is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 23 / 225

http://phpdoc.org/

WEB DEVELOPERS

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public Li
cense
 * along with this program. If not, see <http://www.gnu.org/licenses/
>.
 *
 * HUBzero is a registered trademark of Purdue University.
 */

 Classes

Every class must have a docblock that contains these phpDocumentor tags at a minimum:

/**
 * Short description for class
 *
 * Long description for class (if any)...
 *
 * @package hubzero-cms
 * @subpackage com_members
 * @copyright Copyright 2005-2011 Purdue University. All rights rese
rved.
 * @license http://www.gnu.org/licenses/lgpl-3.0.html LGPLv3
 * @version Release: @package_version@
 * @since Class available since Release 1.5.0
 * @deprecated Class deprecated in Release 2.0.0
 */

 Functions

Every function, including object methods, must have a docblock that contains at a minimum:

 A description of the function
 All of the arguments
 All of the possible return values

It is not necessary to use the “@access” tag because the access level is already known from
the “public”, “private”, or “protected” modifier used to declare the function.

 24 / 225

WEB DEVELOPERS

If a function or method may throw an exception, use @throws for all known exception classes:

@throws exceptionclass [description]

 SQL Queries

SQL keywords are to be written in uppercase, while all other identifiers (which the exception of
quoted text) is to be in lowercase.

$sql = "SELECT `id`, `name` from `people` "
 . "WHERE `name`='Fred' OR `name`='Susan'";

 25 / 225

WEB DEVELOPERS

PHP Naming Conventions

Classes

 HUBzero Library

HUBzero Core Library uses the PSR-0 class naming convention whereby the names of the
classes directly map to the directories in which they are stored. The root level directory
ofHUBzero’s standard library is the “Hubzero/” directory. All HUBzero core library classes are
stored hierarchically under these root directories.

Class names may only contain alphanumeric characters. Numbers are permitted in class names
but are discouraged in most cases. Underscores are only permitted in place of the path
separator; the filename “Hubzero/User/Profile.php” must map to the class name
“Hubzero_User_Profile”.

If a class name is comprised of more than one word, the first letter of each new word must be
capitalized. Successive capitalized letters are not allowed, e.g. a class “Hubzero_PDF” is not
allowed while “Hubzero_Pdf” is acceptable.

Note: Code that must be deployed alongside Hubzero and Joomla libraries but is not part of the
standard or extras libraries (e.g. application code or libraries that are not distributed by Hubzero)
must never start with “Hubzero_”.

 Extensions

Classes should be given descriptive names. Avoid using abbreviations where possible. Class
names should always begin with an uppercase letter and be written in CamelCase even if using
traditionally uppercase acronyms (such as XML, HTML). One exception is for Joomla framework
classes which must begin with an uppercase ‘J’ with the next letter also being uppercase.

JHtmlHelper
JXmlParser
JModel

These conventions define a pseudo-namespace mechanism for the Joomla framework and
HUBzero core library. Third-party developers are to avoid beginning names with ‘Hubzero’ as it
is reserved. It is advisable for developers to name classes with their own unique prefix.

 Controllers

For single controller components, the naming convention is [Component]Controller.

 26 / 225

https://gist.github.com/Thinkscape/1234504

WEB DEVELOPERS

class ContentController extends Hubzero_Controller
{
 // Methods
}

For a multi-controller components, such as the Banners in the Administrator, the convention is
[Component]Controller[Name].

class BannerControllerClient extends Hubzero_Controller
{
 // Methods
}

 Models

The naming convention is [Component]Model[Name].

class BannerModelClient extends JModel
{
 // Methods
}

 Plugins

The naming convention is plg[Folder][Element]

class plgContentPagebreak extends Hubzero_Plugin
{
 // Methods
}

Filenames

Only alphanumeric characters, underscores, and the dash character (”-”) are permitted. Spaces
are strictly prohibited.

 27 / 225

WEB DEVELOPERS

Any file that contains PHP code should end with the extension “.php”. The following examples
show acceptable filenames:

Hubzero/Factory.php

Hubzero/Session/Helper.php

Hubzero/View/Helper/Html.php

Hubzero library file names must map to class names as described above. Joomla extension
names generally follow similar conventions and will map to class names as described below.

 Controllers

For single controller components, the naming convention of [Component]Controller will map to a
file name of controller.php and be located in the component folder.

com_content
 /controller.php

For a multi-controller components, such as the Banners in the Administrator, the convention of
[Component]Controller[Name] will map to files located in a /controllers folder under the
component folder. The file names will reflect the name of the controller.

com_banner
 /controllers
 /banner.php
 /client.php

 Models

The naming convention of [Component]Model[Name] will map to a similar file structure. The files
will be located in a /models folder under the component folder. The file names will reflect the
name of the model.

com_banner
 /models
 /banner.php

 28 / 225

WEB DEVELOPERS

 /client.php

 Layouts

Components may support different Layouts to render the data supplied by a View and its
Models. A Layout file usually contains markup and some PHP code for display logic only: no
functions, no classes.

A Layout consists of at least one .php file and an equally named .xml manifest file located in the
/tmpl/ folder of a View, both reflect the internal name of the Layout. The standard Layout is
called “default”.

com_content
 /views/
 /article/
 /tmpl/
 / default.php
 / default.xml
 / form.php
 / form.xml
 / pagebreak.php
 / pagebreak.xml

Functions and Methods

Function names may only contain alphanumeric characters. Underscores are not permitted
except as a prefix to indicate protected or private methods. Numbers are permitted in function
names but are discouraged in most cases.

Function names must always start with a lowercase letter. When a function name consists of
more than one word, the first letter of each new word must be capitalized. This is commonly
called “camelCase” formatting.

Verbosity is generally encouraged. Function names should be as verbose as is practical to fully
describe their purpose and behavior.

These are examples of acceptable names for functions:

filterInput()

getElementById()

 29 / 225

WEB DEVELOPERS

widgetFactory()

_myPrivateMethod()

For object-oriented programming, accessors for instance or static variables should always be
prefixed with “get” or “set”. In implementing design patterns, such as the singleton or factory
patterns, the name of the method should contain the pattern name where practical to more
thoroughly describe behavior.

For methods on objects that are declared with the “private” or “protected” modifier, the first
character of the method name must be an underscore. This is the only acceptable application of
an underscore in a method name. Methods declared “public” should never contain an
underscore.

Functions in the global scope (a.k.a “floating functions”) are permitted but discouraged in most
cases. Consider wrapping these functions in a static class.

Variables

Variable names may only contain alphanumeric characters. Underscores and numbers are
permitted in variable names but are discouraged in most cases.

For instance variables that are declared with the “private” or “protected” modifier, the first
character of the variable name must be a single underscore. Member variables declared
“public” should never start with an underscore.

As with function names (see above) variable names must always start with a lowercase letter
and follow the “camelCaps” capitalization convention.

Verbosity is generally encouraged. Variables should always be as verbose as practical to
describe the data that the developer intends to store in them. Terse variable names such as
“$i” and “$n” are discouraged for all but the smallest loop contexts. If a loop contains more
than 20 lines of code, the index variables should have more descriptive names.

Names should be descriptive, but concise. We don’t want huge sentences as our variable
names, but typing an extra couple of characters is always better than wondering what exactly a
certain variable is for.

class Hubzero_Example
{
 private $_status = null;

 30 / 225

WEB DEVELOPERS

 protected $_fieldName = null;

 protected function _sortNames()
 {
 $someNames = array();
 }
}

Constants

 Constants

Constants may contain both alphanumeric characters and underscores. Numbers are permitted
in constant names.

All letters used in a constant name must be capitalized, while all words in a constant name must
be separated by underscore characters.

For example, EMBED_SUPPRESS_EMBED_EXCEPTION is permitted but EMBED
_SUPPRESSEMBEDEXCEPTION is not.

Prefix constant names with the uppercase name of the class/package they are used in. For
example, the constants used by the JError class all begin with “JERROR_”.

Constants must be defined as class members with the “const” modifier. Defining constants in
the global scope with the “define” function is permitted but strongly discouraged.

 31 / 225

WEB DEVELOPERS

CSS Coding Styles

Terminology

Concise terminology used in these standards:

selector {
 property: value;
}

Selectors

Selectors should:

be on a single line
end in an opening brace
be closed with a closing brace on a separate line

A blank line should be placed between each group, section, or block of multiple selectors of
logically related styles.

Were appropriate, blocks of related styles should be commented to facilitate understanding of
their use.

/* Book Navigation */
 .book-navigation .page-next {
 }
 .book-navigation .page-previous {
 }

/* Book Forms */
 .book-admin-form {
 border: 1px solid #000;
 }

Note: Indentation is optional but encouraged when commenting blocks of related styles.

Multiple selectors

Multiple selectors should each be on a single line, with no space after each comma:

 32 / 225

WEB DEVELOPERS

#forum td.posts,
#forum td.topics,
#forum td.replies,
#forum td.pager {
}

Properties

All properties should be on the following line after the opening brace. Each property should:

be on its own line
be indented one tab relative to the selector line
have a colon immediately after (no spaces permitted) the property name
have a single space after the property and before the property value
end in a semi-colon

#forum .description {
 color: #EFEFEF;
 font-size: 0.9em;
 margin: 0.5em;
}

 Multiple values

Where properties can have multiple values, each value should be separated with a space.

font-family: helvetica, sans-serif;

 33 / 225

WEB DEVELOPERS

Database Schema Conventions

Table Names

Table names have all lowercase letters and underscores between words, also all table names
need to be plural, e.g. invoice_items, orders.

If the table name contains serveral words, only the last one should be plural:

applications
application_functions
application_function_roles

Field Names

Field names will be lowercase, generally singular case, and words are separated by
underscores, e.g. order_amount, first_name

Foreign Keys

The foreign key is named with the singular version of the target table name with _id appended
to it, e.g. order_id in the items table where we have items linked to the orders table.

Many-To-Many Link Tables

Tables used to join two tables in a many to many relationship is named using the table names
they link, with the table names in alphabetical order, for example items_orders.

 34 / 225

WEB DEVELOPERS

Common Tasks & Objects

 35 / 225

WEB DEVELOPERS

Config

Joomla! Configuration

Accessing the global Joomla! site configuration:

$jconfig =& JFactory::getConfig();

Retrieving a value from the configuration:

echo $config->getValue('config.sitename');

HUB Configuration

Although rarer than accessing the global Joomla! site configuration, sometimes it is necessary
to access HUB-specific configurations. This can be done as follows:

$xhub =& XFactory::getHub();

Retrieving a value from the configuration:

echo $xhub->getCfg('hubShortName');

 36 / 225

WEB DEVELOPERS

Users & Profiles

Joomla User Object

Current User

Accessing the Joomla! User object for the current user can be done as follows:

$juser =& JFactory::getUser();

Other Users

To access user info for anyone not the current user (accepts user ID number or username):

$otheruser =& JUser::getInstance($id);

Any field from the user database table may then be accessed through the get('fieldname')
method:

$id = $juser->get('id');
$name = $juser->get('name');

Object Member Variables and Parameters

These are the relevant member variables automatically generated on a call to getUser():

id - The unique, numerical user id. Use this when referencing the user record in other
database tables.
name - The name of the user. (e.g. Vint Cerf)
username - The login/screen name of the user. (e.g. shmuffin1979)
email - The email address of the user. (e.g. crashoverride@hackers.com)
password - The encrypted version of the user's password
password_clear - Set to the user's password only when it is being changed. Otherwise,
remains blank.
usertype - The role of the user within Joomla!. (Super Administrator, Editor, etc...)
gid - Set to the user's group id, which corresponds to the usertype.
block - Set to '1' when the user is set to 'blocked' in Joomla!.
registerDate - Set to the date when the user was first registered.

 37 / 225

WEB DEVELOPERS

lastvisitDate - Set to the date the user last visited the site.
guest - If the user is not logged in, this variable will be set to '1'. The other variables will
be unset or default values.

In addition to the member variables (which are stored in the database in columns), there are
parameters for the user that hold preferences. To get one of these parameters, call the
getParam() member function of the user object, passing in the name of the parameter you want
along with a default value in case it is blank.

$user =& JFactory::getUser();
$language = $user->getParam('language', 'the default');

echo "<p>Your language is set to {$language}.</p>";

HUBzero Extended Profile

HUBzero comes with extended user profiles that allow for considerably more information than
the standard Joomla! User. Extended fields include information about disability, gender, race,
bios, picture, etc. To access an extended profile, use the XProfile object and load() method
(accepts user ID number or username).

// Import the needed library
ximport('Hubzero_User_Profile');

// Instantiate a new profile object
$profile = new Hubzero_User_Profile();

// Load the profile
$profile->load($id);

Any field from the user database table may then be accessed through the get('fieldname')
method:

$email = $profile->get('email');
$name = $profile->get('name');

Multi-option fields such as disability will return arrays.

 38 / 225

WEB DEVELOPERS

Checking if a User is logged in

Checking if a user is currently logged in can be done as follows:

// Call the user object
$juser =& JFactory::getUser();

// If 'guest' is true, they are logged OUT
// If 'guest' is false, they are logged IN
if ($juser->get('guest')) {
 return false;
}

Privileges

Not all authenticated users are given equal rights. For instance, a Super Administrator may be
able to edit anyone's content, while a Publisher may only be able to edit their own. The
authorize() member function can be used to determine if the current user has permission to do a
certain task. The first parameter is used to identify which component or function we wish to
authenticate against. The second represents the task. The third and fourth are optional; they
further break the permissions down into record types and ownership respectively.

In Joomla! 1.5, the rights for all of the core components are stored in
libraries/joomla/user/authorization.php. These are available to all extensions wherever
authentication is required. If the permission scheme of the Content component suits your
extension's needs, you can use code similar to the following to determine what functions to give
to a specific user.

$user =& JFactory::getUser();

if ($user->authorize('com_content', 'edit', 'content', 'all')) {
 echo "<p>You may edit all content.</p>";
} else {
 echo "<p>You may not edit all content.</p>";
}

if ($user->authorize('com_content', 'publish', 'content', 'own')) {
 echo "<p>You may publish your own content.</p>";
} else {
 echo "<p>You may not publish your own content.</p>";
}

 39 / 225

WEB DEVELOPERS

The permissions for core functions may not be suitable for your extension. If this is the case,
you can create your own permissions. You will probably want to add this code in a place where
it will always be executed, such as the beginning of the component you are building or in a
systemwide plugin. First, you need to get an authorization object using the getACL() member
function of JFactory. This works like getUser() in that it only creates one authorization object
during any particular Joomla! request. Once you have this object, call the addACL() member
function to add permissions. Pass in the name of your component or function, the task name,
the string 'users', and the user type (in lowercase) respectively. If you want to also define record
sets and ownership, pass those in as an additional two parameters.

Note that in Joomla! 1.5, permissions are not inherited. For example, if you give an
Administrator the right to edit content, Super Administrators do not automatically get this right;
you must grant it separately.

$auth =& JFactory::getACL();

$auth->addACL('com_userinfo15', 'persuade', 'users', 'super administra
tor');
$auth->addACL('com_userinfo15', 'persuade', 'users', 'administrator');
$auth->addACL('com_userinfo15', 'persuade', 'users', 'manager');

$user =& JFactory::getUser();

if ($user->authorize('com_userinfo15', 'persuade')) {
 echo "<p>You may persuade the system to do what you wish.</p>";
} else {
 echo "<p>You are not very persuasive.</p>";
}

Group Memberships

Sometimes you may have a component or plugin that is meant to be accessed by members of a
certain group or displays specific data based on membership in certain groups.

// Get the user object
$juser =& JFactory::getUser();

// Include a needed HUBzero library
ximport('Hubzero_User_Helper');

// Get the groups of the current logged-in user
$user_groups = Hubzero_User_Helper::getGroups($juser->get('id'));

 40 / 225

WEB DEVELOPERS

The getGroups() method is passed a user ID and returns an array of objects if any group
memberships are found. It will return false if no group memberships are found. Each object
contains data specifying the user's status within the group, among other things.

Array (
 [0] => stdClass Object (
 [published] => 1
 [cn] => greatgroup
 [description] => A Great Group
 [registered] => 1
 [regconfirmed] => 1
 [manager] => 0
)
 [1] => stdClass Object (
 [published] => 1
 [cn] => mygroup
 [description] => My Group
 [registered] => 1
 [regconfirmed] => 1
 [manager] => 1
)
)

published - 0 or 1, the published state of the group
cn - string, the group alias
description - string, the group title
registered - 0 or 1, if the user applied for membership to this group (only 0 if the user
was invited)
regconfirmed - 0 or 1, if the user's membership application has been accepted
(automatically 1 for invitees)
manager - 0 or 1, if the user is a manager of this group

 41 / 225

WEB DEVELOPERS

Database

Overview

Joomla! has been built with the ability to use several different kinds of SQL-database-systems
and to run in a variety of environments with different table-prefixes. In addition to these
functions, the class automatically creates the database connection. Besides instantiating the
object, at a minimum, you only need 2 lines of code to get a result from the database in a
variety of formats. Using the Joomla! database layer ensures a maximum of compatibility and
flexibility for your extension.

This tutorial looks at how to set and execute various queries.

Preparing The Query

// Get a database object
$db =& JFactory::getDBO();

$query = "SELECT * FROM #__example_table WHERE id = 999999;";
$db->setQuery($query);

First we instantiate the database object, then we prepare the query. You can use the normal
SQL-syntax, the only thing you have to change is the table-prefix. To make this as flexible as
possible, Joomla! uses a placeholder for the prefix, the "#__". In the next step, the
$db->setQuery(), this string is replaced with the correct prefix.

Now, if we don't want to get information from the database, but insert a row into it, we need one
more function. Every string-value in the SQL-syntax should be quoted. For example, MySQL
uses back-ticks `` for names and single quotes '' for values. Joomla! has some functions to do
this for us and to ensure code compatibility between different databases. We can pass the
names to the function $db->nameQuote($name) and the values to the function
$db->Quote($value).

A fully quoted query example is:

$query = "
 SELECT *
 FROM ".$db->nameQuote('#__example_table')."
 WHERE ".$db->nameQuote('id')." = ".$db->quote('999999').";
 ";

 42 / 225

WEB DEVELOPERS

Whatever we want to do, we have to set the query with the $db->setQuery() function. Although
you could write the query directly as a parameter for $db->setQuery(), it's commonly done by
first saving it in a variable, normally $query, and then handing this variable over. This helps
writing clean, readable code.

setQuery($query)

The setQuery($query) method sets up a database query for later execution either by the query()
method or one of the Load result methods.

$db =& JFactory::getDBO();
$query = "/* some valid sql string */";
$db->setQuery($query);

Note: The parameter $query must be a valid SQL string, it can either be added as a string
parameter or as a variable; generally a variable is preferred as it leads to more legible code and
can help in debugging.

setQuery() also takes three other parameters: $offset, $limit - both used in list pagination; and
$prefix - an alternative table prefix. All three of these variables have default values set and can
usually be ignored.

Executing The Query

To execute the query, Joomla! provides several functions, which differ in their return value.

Basic Query Execution

The query() method is the the basic tool for executing sql queries on a database. In Joomla! it is
most often used for updating or administering the database and not seen often for loading data.
This largely because the various load methods detailed on this page have the query step built in
to them.

The syntax is very straightforward:

$db =& JFactory::getDBO();
$query = "/* some valid sql string */";
$db->setQuery($query);
$result = $db->query();

 43 / 225

WEB DEVELOPERS

Note: $db->query() returns an appropriate database resource if successful, or FALSE if not.

Query Execution Information

getAffectedRows()
explain()
insertid()

Insert Query Execution

insertObject()

Query Results

The database class contains many methods for working with a query's result set.

Single Value Result

loadResult()

Use loadResult() when you expect just a single value back from your database query.

id name email username
1 John Smith johnsmith@example.

com
johnsmith

2 Magda Hellman magda_h@example.c
om

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

This is often the result of a 'count' query to get a number of records:

$db =& JFactory::getDBO();
$query = "
 SELECT COUNT(*)
 FROM ".$db->nameQuote('#__my_table')."
 WHERE ".$db->nameQuote('name')." = ".$db->quote($value).";
 ";
$db->setQuery($query);
$count = $db->loadResult();

 44 / 225

WEB DEVELOPERS

or where you are just looking for a single field from a single row of the table (or possibly
a single field from the first row returned).

$db =& JFactory::getDBO();
$query = "
 SELECT ".$db->nameQuote('field_name')."
 FROM ".$db->nameQuote('#__my_table')."
 WHERE ".$db->nameQuote('some_name')." = ".$db->quote($some_va
lue).";
 ";
$db->setQuery($query);
$result = $db->loadResult();

Single Row Results

Each of these results functions will return a single record from the database even though there
may be several records that meet the criteria that you have set. To get more records you need
to call the function again.

id name email username
1 John Smith johnsmith@example.co

m
johnsmith

2 Magda Hellman magda_h@example.co
m

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

loadRow()

loadRow() returns an indexed array from a single record in the table:

...
$db->setQuery($query);
$row = $db->loadRow();
print_r($row);

will give:

Array (
 [0] => 1
 [1] => John Smith

 45 / 225

WEB DEVELOPERS

 [2] => johnsmith@example.com
 [3] => johnsmith
)

You can access the individual values by using:

$row['index'] // e.g. $row['2']

Note:

1. The array indices are numeric starting from zero.
2. Whilst you can repeat the call to get further rows, one of the functions that

returns multiple rows might be more useful

loadAssoc()

loadAssoc() returns an associated array from a single record in the table:

$db->setQuery($query);
$row = $db->loadAssoc();
print_r($row);

will give:

Array (
 [id] => 1
 [name] => John Smith
 [email] => johnsmith@example.com
 [username] => johnsmith
)

You can access the individual values by using:

 46 / 225

WEB DEVELOPERS

$row['name'] // e.g. $row['name']

Whilst you can repeat the call to get further rows, one of the functions that returns
multiple rows might be more useful

loadObject()

loadObject() returns a PHP object from a single record in the table:

$db->setQuery($query);
$result = $db->loadObject();
print_r($result);

will give:

stdClass Object (
 [id] => 1
 [name] => John Smith
 [email] => johnsmith@example.com
 [username] => johnsmith
)

You can access the individual values by using:

$row->index // e.g. $row->email

Whilst you can repeat the call to get further rows, one of the functions that returns
multiple rows might be more useful

Single Column Results

Each of these results functions will return a single column from the database.

 47 / 225

WEB DEVELOPERS

id name email username
1 John Smith johnsmith@example.co

m
johnsmith

2 Magda Hellman magda_h@example.co
m

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

loadResultArray()

loadResultArray() returns an indexed array from a single column in the table:

$query = "
 SELECT name, email, username
 FROM . . . ";

$db->setQuery($query);
$column= $db->loadResultArray();
print_r($column);

will give:

Array (
 [0] => John Smith
 [1] => Magda Hellman
 [2] => Yvonne de Gaulle
)

You can access the individual values by using:

$column['index'] // e.g. $column['2']

Note:

1. The array indices are numeric starting from zero.
2. loadResultArray() is equivalent to loadResultArray(0)

 48 / 225

WEB DEVELOPERS

loadResultArray($index)

loadResultArray($index) returns an indexed array from a single column in the table:

$query = "
 SELECT name, email, username
 FROM . . . ";

$db->setQuery($query);
$column= $db->loadResultArray(1);
print_r($column);

will give:

Array (
 [0] => johnsmith@example.com
 [1] => magda_h@example.com
 [2] => ydg@example.com
)

You can access the individual values by using:

$column['index'] // e.g. $column['2']

loadResultArray($index) allows you to iterate through a series of columns in the results

$db->setQuery($query);
for ($i = 0; $i loadResultArray($i);
 print_r($column);
}

will give:

 49 / 225

WEB DEVELOPERS

Array ([0] => John Smith [1] => Magda Hellman [2] => Yvonne de G
aulle)
Array ([0] => johnsmith@example.com [1] => magda_h@example.com [
2] => ydg@example.com)
Array ([0] => johnsmith [1] => magdah [2] => ydegaulle)

The array indices are numeric starting from zero.

Multi-Row Results

Each of these results functions will return multiple records from the database.

id name email username
1 John Smith johnsmith@example.co

m
johnsmith

2 Magda Hellman magda_h@example.co
m

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

loadRowList()

loadRowList() returns an indexed array of indexed arrays from the table records returned
by the query:

$db->setQuery($query);
$row = $db->loadRowList();
print_r($row);

will give:

Array (
 [0] => Array ([0] => 1 [1] => John Smith [2] => johnsmith@examp
le.com [3] => johnsmith)
 [1] => Array ([0] => 2 [1] => Magda Hellman [2] => magda_h@exam
ple.com [3] => magdah)
 [2] => Array ([0] => 3 [1] => Yvonne de Gaulle [2] => ydg@examp
le.com [3] => ydegaulle)
)

 50 / 225

WEB DEVELOPERS

You can access the individual values by using:

$row['index'] // e.g. $row['2']

and you can access the individual values by using:

$row['index']['index'] // e.g. $row['2']['3']

The array indices are numeric starting from zero.

loadAssocList()

loadAssocList() returns an indexed array of associated arrays from the table records
returned by the query:

$db->setQuery($query);
$row = $db->loadAssocList();
print_r($row);

will give:

Array (
 [0] => Array ([id] => 1 [name] => John Smith [email] => johnsmi
th@example.com [username] => johnsmith)
 [1] => Array ([id] => 2 [name] => Magda Hellman [email] => magd
a_h@example.com [username] => magdah)
 [2] => Array ([id] => 3 [name] => Yvonne de Gaulle [email] => y
dg@example.com [username] => ydegaulle)
)

 51 / 225

WEB DEVELOPERS

You can access the individual rows by using:

$row['index'] // e.g. $row['2']

and you can access the individual values by using:

$row['index']['column_name'] // e.g. $row['2']['email']

loadAssocList($key)

loadAssocList($key) returns an associated array - indexed on 'key' - of associated arrays
from the table records returned by the query:

$db->setQuery($query);
$row = $db->loadAssocList('username');
print_r($row);

will give:

Array (
 [johnsmith] => Array ([id] => 1 [name] => John Smith [email] =>
 johnsmith@example.com [username] => johnsmith)
 [magdah] => Array ([id] => 2 [name] => Magda Hellman [email] =>
 magda_h@example.com [username] => magdah)
 [ydegaulle] => Array ([id] => 3 [name] => Yvonne de Gaulle [ema
il] => ydg@example.com [username] => ydegaulle)
)

You can access the individual rows by using:

$row['key_value'] // e.g. $row['johnsmith']

 52 / 225

WEB DEVELOPERS

and you can access the individual values by using:

$row['key_value']['column_name'] // e.g. $row['johnsmith']['email
']

Note: Key must be a valid column name from the table; it does not have to be an Index
or a Primary Key. But if it does not have a unique value you may not be able to retrieve
results reliably.

loadObjectList()

loadObjectList() returns an indexed array of PHP objects from the table records returned
by the query:

$db->setQuery($query);
$result = $db->loadObjectList();
print_r($result);

will give:

Array (
 [0] => stdClass Object ([id] => 1 [name] => John Smith
 [email] => johnsmith@example.com [username] => johnsmith)
 [1] => stdClass Object ([id] => 2 [name] => Magda Hellman
 [email] => magda_h@example.com [username] => magdah)
 [2] => stdClass Object ([id] => 3 [name] => Yvonne de Gaulle
 [email] => ydg@example.com [username] => ydegaulle)
)

You can access the individual rows by using:

$row['index'] // e.g. $row['2']

 53 / 225

WEB DEVELOPERS

and you can access the individual values by using:

$row['index']->name // e.g. $row['2']->email

loadObjectList('key')

loadObjectList('key') returns an associated array - indexed on 'key' - of objects from the
table records returned by the query:

$db->setQuery($query);
$row = $db->loadObjectList('username');
print_r($row);

will give:

Array (
 [johnsmith] => stdClass Object ([id] => 1 [name] => John Smith
 [email] => johnsmith@example.com [username] => johnsmith)
 [magdah] => stdClass Object ([id] => 2 [name] => Magda Hellman
 [email] => magda_h@example.com [username] => magdah)
 [ydegaulle] => stdClass Object ([id] => 3 [name] => Yvonne de G
aulle
 [email] => ydg@example.com [username] => ydegaulle)
)

You can access the individual rows by using:

$row['key_value'] // e.g. $row['johnsmith']

and you can access the individual values by using:

$row['key_value']->column_name // e.g. $row['johnsmith']->email

 54 / 225

WEB DEVELOPERS

Note: Key must be a valid column name from the table; it does not have to be an Index
or a Primary Key. But if it does not have a unique value you may not be able to retrieve
results reliably.

Misc Result Set Methods

getNumRows()

getNumRows() will return the number of result rows found by the last query and waiting
to be read. To get a result from getNumRows() you have to run it after the query and
before you have retrieved any results.

$db->setQuery($query);
$db->query();
$num_rows = $db->getNumRows();
print_r($num_rows);
$result = $db->loadRowList();

will give:

3

Note: if you run getNumRows() after loadRowList() - or any other retrieval method - you
may get a PHP Warning.

 55 / 225

WEB DEVELOPERS

JTable

Overview

The JTable class is an implementation of the Active Record design pattern. It is used
throughout Joomla! for creating, reading, updating, and deleting records in the database table.

When properly extended, JTable gives you all of the basic functions you need for managing and
retrieving records in a database table. Member functions take care of the rest when you add
member variables, the table name, and the key column.

Writing an extension of JTable

To use JTable, create an extension of the class. In this example, we have a database table
containing recipes.

<?php

defined('_JEXEC') or die();

class TableRecipes extends JTable
{
 var $id = null;
 var $ingredients = null;
 var $instructions = null;
 var $serves = null;
 var $difficulty = null;
 var $prep_time = null;
 var $cook_time = null;
 var $published = 0;

 function __construct(&$db)
 {
 parent::__construct('#__recipes', 'id', $db);
 }
}

When naming your class extension, the convention is to prefix it with 'Table', then follow with a
CamelCased version of the table's name. All of the member variables of your class should
match the column names in the database. The default values should be valid according to the
table schema. For instance, if you have columns that are NOT NULL, you must use a value

 56 / 225

WEB DEVELOPERS

other than 'null' as the default.

Finally, create a constructor for the class that accepts a reference to the current database
instance. This will call the parent constructor which needs the name of the table, the name of
the primary key column, and the database instance. The name of the table uses #__ instead of
jos_, as the administrator can pick any table prefix desired during Joomla! installation.

If you were using this class as a part of a component called 'Recipes', you would place this code
in the file /administrator/components/com_recipes/tables/recipes.php.

Using a JTable class extension

Once the table class is in place, you can use it in any Joomla! extension. To include the file,
place this line in your extension's source code (use com_nameofyourcomponent in place of
com_recipes):

JTable::addIncludePath(JPATH_ADMINISTRATOR.DS.'components'.DS.'com_rec
ipes'.DS.'tables');

To get an instance of the object, use this code:

$row =& JTable::getInstance('recipes', 'Table');

Notice that the lowercase version of the suffix of your class name is used as the first parameter,
with the prefix 'Table' as the second. Also, the getInstance() member function of JTable returns
the object by reference instead of value.

In a model class (extends JModel) you can also use:

$row =& $this->getTable('recipes');

Notice that if you have not used the standard naming convention, you can supply the class
prefix as the optional second parameter.

Create/Update

 57 / 225

WEB DEVELOPERS

In a typical situation, you will have an HTML form submitted by the user which PHP will interpret
for you as an associative array. The JRequest class in Joomla! has functions ready to assist
with retrieving this data safely. Use JRequest::get('post') to retrieve all of the elements in the
HTTP POST request as a sanitized array.

Once you have this array, you can pass it into the bind() method of JTable. Doing this will match
the associated items of the array with member variables of the class. In the following example,
the array is retrieved from JRequest::get('post') and immediately passed into bind().

if (!$row->bind(JRequest::get('post'))) {
 return JError::raiseWarning(500, $row->getError());
}

If bind() fails, you want to stop the application and explain the failure before your extension
attempts to send the data. The raiseWarning() function of JError allows you to stop Joomla!,
while the getError() function returns the error message stored in the JTable object.

When binding succeeds and your object is ready, call the store() function. Again, if something
goes wrong, stop the application and explain why.

if (!$row->store()) {
 JError::raiseError(500, $row->getError());
}

Note:

If any member variables of your JTable object are null when store() is called, they are
ignored by default. This allows you to update specific columns of your table, while
leaving the others untouched. If you wish to override this behavior to ensure that all
columns have a value, pass true into store().
The JTable::bind() and JRequest::get() functions do not enforce data types. If you need
a column to be a specific type (for instance, integer), you need to add this logic to your
code before calling store().

Read

 58 / 225

WEB DEVELOPERS

To load a specific row of the database with JTable, pass the key into the load() member
function.

$row->load($id);

This relies on the key column you specified in the second parameter of parent::__construct()
when you extended JTable.

Delete

Like read(), delete() allows you to destroy a specific row in the table based on the key specified
earlier.

$row->delete($id);

If you want to delete multiple rows at once, you will need to write the query manually.

 59 / 225

WEB DEVELOPERS

Tags

Overview

The Tag class is a set of tools for adding, removing, editing, and displaying tags on objects. It is
used throughout HUB installations for adding tags to such things as resources, users, events,
and more.

When properly extended, Tags gives you all of the basic functions you need for managing and
retrieving tag records in the database table.

All tags are stored within a single table called "#__tags". The information that associates a
particular tag to a specific user, event or group, is stored in a table called "#__tags_object".
Storing the association data separate from the tag itself allows for a tag to be represented once
but be connected to multiple items. If that tag is ever changed for any reason, it will be
represented the same regardless of what object it is attached to.

The #__tags_object table stores, among other things, such data as the unique ID of the tag, the
unique ID of the object being tagged, and what component (or, potentially, table) that object
belongs to.

id objectid tagid tbl
1 77 6 resources
2 77 6 events

Here we have two entries that both link to a tag with an ID of "6" and both with object IDs of
"77". One entry is a resource and the other is an event. The "tbl" field is the most important
distinguishing factor; This allows us to have multiple objects with the same object ID, linking to
the same tag but not create a conflict.

Writing an extension of Tags

To use Tags, create an extension of the class. In this example, we're adding tags to our
"com_example" objects.

<?php
// Check to ensure this file is included in Joomla!
defined('_JEXEC') or die('Restricted access');

require_once(JPATH_ROOT.DS.'components'.DS.'com_tags'.DS.'helpers'.DS
.'handler.php');

class ExampleTags extends TagsHandler
{

 60 / 225

WEB DEVELOPERS

 public function __construct($db)
 {
 // The database connection object
 $this->_db = $db;
 // A unique name
 $this->_tbl = 'example';
 }
}

When naming your class extension, the convention is to have a CamelCased version of the
component's name suffixed with "Tags".

Finally, create a constructor for the class that accepts a reference to the current database
instance and the name to be used to uniquely identify tag data as belonging to your specific
component.

Using a Tag class extension

Once the class is created and in place, it can be included and instantiated

Create/Update

// Retrieve posted tags (comma delimitated string)
$tags = trim(JRequest::getVar('tags', ''));

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Tag the object
$et->tag_object($juser->get('id'), $object_id, $tags);

This method is the same for both adding tags to a previously untagged object and updating the
existing list of tags on an object.

Read

 61 / 225

WEB DEVELOPERS

get_tag_cloud($showsizes, $showadmintags, $object_id)

Returns a string of comma-separated tags.

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Get a tag cloud (HTML List)
$tags = $et->get_tag_cloud($showsizes, $showadmintags, $object_i
d);
print_r($tags);

will give:

My Tag, Your Tag, Their Tag

get_tag_cloud($showsizes, $showadmintags, $object_id)

Returns a tag cloud, derived of a an HTML list. Each tag is linked to the Tags
component and comprises one list item. A CSS class of "tags" on the list allows for
styling.

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Get a string of tags separated by commas
$tags = $et->get_tag_string($object_id);
print_r($tags);

will give:

 62 / 225

WEB DEVELOPERS

<ol class="tags">
 My Tag
 Your Tag
 Their Tag

get_tags_on_object($object_id)

Returns an array of associative arrays.

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Get a string of tags separated by commas
$tags = $et->get_tags_on_object($object_id);
print_r($tags);

will give:

Array (
 [0] => Array (
 [tag] => 'mytag'
 [raw_tag] => 'My Tag'
 [tagger_id] => 32
 [admin] => 0
)
 [1] => Array (
 [tag] => 'yourtag'
 [raw_tag] => 'Your Tag'
 [tagger_id] => 32
 [admin] => 0
)
 [2] => Array (
 [tag] => 'theirtag'
 [raw_tag] => 'Their Tag'
 [tagger_id] => 32
 [admin] => 0
)

 63 / 225

WEB DEVELOPERS

)

Using the Tag Editor plugin

To make adding tags and editing a list of existing tags in a form, HUBzero offers a Tag Editor
plugin. To use the plugin in a view, do the following:

// Load the plugin
JPluginHelper::importPlugin('hubzero');
$dispatcher =& JDispatcher::getInstance();

// Trigger the event
$tf = $dispatcher->trigger('onGetMultiEntry', array(array('tags','tag
s','actags','',$tags)));

// Output
if (count($tf) > 0) {
 echo $tf[0];
} else {
 echo '<input type="text" name="tags" value="'. $tags .'" />';
}

The first parameter passed ('tags') tells the plugin that you wish to display a tags autocompleter.
The nest parameter is the name of the input field. The third is the ID of the input field. The fourth
is any CSS class you wish to assign to the input. The $tags variable here must be a string of
comma-separated tags.

 64 / 225

WEB DEVELOPERS

Search

 65 / 225

WEB DEVELOPERS

Retrieving GET & POST data

JRequest 'getVar' method

To retrieve GET/POST request data, Joomla! uses the getVar method of the JRequest class
(JRequest::getVar()).

Retrieving Data

If you have a form variable named 'address', you would want to use this code to get it:

$address = JRequest::getVar('address');

Unless other parameters are set, all HTML and trailing whitespace will be filtered out.

The DEFAULT Parameter

If you want to specify a default value in the event that 'address' is not in the request or is unset,
use this code:

$address = JRequest::getVar('address', 'Address is empty');
echo $address; // Address is empty

The SOURCE Parameter

Frequently, you will expect your variable to be found in a specific portion of the HTTP request
(POST, GET, etc...). If this is the case, you should specify which portion; this will slightly
increase your extension's security. If you expect 'address' to only be in POST, use this code to
enforce that:

$address = JRequest::getVar('address', 'default value goes here', 'pos
t');

The VARIABLE TYPE Parameter

The fourth parameter of getVar() can be used to specify certain filters to force validation of
specific value types for the variable.

 66 / 225

WEB DEVELOPERS

$address = JRequest::getVar('address', 'default value goes here', 'pos
t','variable type');

Here is a list of types you can validate:

INT
INTEGER
FLOAT
DOUBLE
BOOL
BOOLEAN
WORD
ALNUM
CMD
BASE64
STRING
ARRAY
PATH
USERNAME

The FILTER MASK Parameter

Finally, there are some mask constants you can pass in as the fifth parameter that allow you to
bypass portions of the filtering:

$address = JRequest::getVar('address', 'default value goes here', 'pos
t','validation type','mask type');

JREQUEST_NOTRIM - prevents trimming of whitespace
JREQUEST_ALLOWRAW - bypasses filtering
JREQUEST_ALLOWHTML - allows most HTML. If this is not passed in, HTML is
stripped out by default.

 67 / 225

WEB DEVELOPERS

Constants

Joomla! Constants

These constants are defined for use in Joomla and extensions:

DS Directory separator. "/"
JPATH_ADMINISTRATOR The path to the administrator folder.
JPATH_BASE The path to the installed Joomla! site.
JPATH_CACHE The path to the cache folder.
JPATH_COMPONENT The path to the current component being

executed.
JPATH_CONFIGURATION The path to folder containing the

configuration.php file.
JPATH_INSTALLATION The path to the installation folder.
JPATH_LIBRARIES The path to the libraries folder.
JPATH_PLUGINS The path to the plugins folder.
JPATH_ROOT The path to the installed Joomla! site.
JPATH_SITE The path to the installed Joomla! site.
JPATH_THEMES The path to the templates folder.
JPATH_XMLRPC The path to the XML-RPC Web service folder.

Note: These paths are the absolute paths of these locations within the file system, NOT the
path you'd use in a URL.

For URL paths, try using JURI::base.

 68 / 225

WEB DEVELOPERS

Scheduled Tasks

Plugins

A set of tasks can be registered with the Cron component by making a plugin. Each plugin must
respond to the "onCronEvents" trigger. The response from that trigger is an object (stdClass)
that returns the plugin's name and an array of callable tasks (event triggers).

Registering Tasks

Plugins should be placed within the cron plugins folder:

/myhub
 /plugins
 /cron

Here is an example of a cron plugin that registers a set of "mytasks" events.

/**
 * Cron plugin for my tasks
 */
class plgCronMytasks extends JPlugin
{
 /**
 * Return a list of events
 *
 * @return array
 */
 public function onCronEvents()
 {
 // Load the plugin's language file
 $this->loadLanguage();

 // Create the return object
 $obj = new stdClass();

 // Assign the plugin's name
 $obj->plugin = $this->_name;

 // Build the list of callable events
 $obj->events = array(
 array(

 69 / 225

WEB DEVELOPERS

 'name' => 'doSomething', // The name of your task
 'label' => JText::_('PLG_CRON_MYTASKS_DOSOMETHING'), // Nice lab
el
 'params' => '' // Name of the params group to load (optional)
)
);

 // Return the data
 return $obj;
 }
}

As shown in the previous example, each event consist of an array containing three keys: name,
label, and params.

name

The plugin must implement a method with the same name as whatever is specified for
the name key and the names should match exactly. That is, if a name of
'onJumpUpAndDown' is specified, then the plugin must have a method of
onJumpUpAndDown();.

label

This is a nice, human readable name for the event trigger. It should be a language key
with an associated string in the plugin's language file.

params

This is an optional value for specifying a params group (Joomla 1.5) or fieldset (Joomla
1.6+) containing parameters associated with the specific plugin event. This allows for
multiple cron jobs calling the same event but with varying values. An example of this can
be found in the support tickets cron plugin where the event sendTicketsReminder has a
specified params group of 'ticketreminder'. Changing those params would allow, for
instance, a job that sends ticket reminders one a month for all open tickets and a ticket
reminder once a week for all open and status: critical tickets.

A snippet from the support plugin, specifying the list of available tasks:

/**

 70 / 225

WEB DEVELOPERS

 * Cron plugin for support tickets
 */
class plgCronSupport extends JPlugin
{
 /**
 * Return a list of events
 *
 * @return array
 */
 public function onCronEvents()
 {
 $this->loadLanguage();

 $obj = new stdClass();
 $obj->plugin = $this->_name;

 $obj->events = array(
 array(
 'name' => 'onClosePending',
 'label' => JText::_('PLG_CRON_SUPPORT_CLOSE_PENDING'),
 'params' => 'ticketpending'
),
 array(
 'name' => 'sendTicketsReminder',
 'label' => JText::_('PLG_CRON_SUPPORT_EMAIL_REMINDER'),
 'params' => 'ticketreminder'
)
);

 return $obj;
 }
 ...
}

In the support plugin's manifest:

...
<fieldset group="ticketreminder">
 <field name="support_ticketreminder_severity" type="list" defaul
t="all" label="Tickets with severity" description="Ticket severit
y to message users about.">
 <option value="all">All</option>
 <option value="critical,major">High</option>

 71 / 225

WEB DEVELOPERS

 <option value="normal">Normal</option>
 <option value="minor,trivial">Low</option>
 </field>
 <field name="support_ticketreminder_group" type="text" menu="hid
e" label="For users in group" default="" description="Only users
within the group specified will be messaged." />
</fieldset>
...

Running Tasks

All tasks are run as standard plugin events. Tasks should return a boolean of true upon
completion.

See the managers documentation on how to create and schedule jobs.

 72 / 225

/documentation/1.2.0/managers/maintenance.cron

WEB DEVELOPERS

Extensions (general)

Overview

Joomla! already is a rich featured content management system but if you're building a website
with Joomla! and you need extra features which aren't available in Joomla! by default, you can
easily extend it with extensions. There are five types of extensions for Joomla!: Components,
Modules, Plugins, Templates, and Languages. Each of these extensions handle specific
functionality.

Components

The largest and most complex of the extension types, a component is in fact a separate
application. You can think of a component as something that has its own functionality, its own
database tables and its own presentation. So if you install a component, you add an application
to your website. Examples of components are a forum, a blog, a community system, a photo
gallery, etc. You could think of all of these as being a separate application. Everyone of these
would make perfectly sense as a stand-alone system. A component will be shown in the main
part of your website and only one component will be shown. A menu is then in fact nothing more
then a switch between different components.

Hubzero Components

com_answers
com_banners
com_blog
com_citations
com_events
com_features
com_feedback
com_forum
com_groups
com_jobs
com_kb
com_members
com_poll
com_projects
com_register
com_resources (com_contribute, found in Hubzero 1.0 and older was merged into this
component)
com_sef
com_store
com_support
com_tags

 73 / 225

WEB DEVELOPERS

com_tools (com_contribtool, found in Hubzero 1.0 and older was merged into this
component)
com_usage
com_whatsnew
com_wiki (alternate name for com_topics)
com_wishlist
com_ysearch (supplants Joomla's com_search)

Modules

Modules are extensions which present certain pieces of information on your site. It's a way of
presenting information that is already present. This can add a new function to an application
which was already part of your website. Think about latest article modules, login module, a
menu, etc. Typically you'll have a number of modules on each web page. The difference
between a module and a component is not always very clear for everybody. A module doesn't
make sense as a standalone application, it will just present information or add a function to an
existing application. Take a newsletter for instance. A newsletter is a module. You can have a
website which is used as a newsletter only. That makes perfectly sense. Although a newsletter
module probably will have a subscription page integrated, you might want to add a subscription
module on a sidebar on every page of your website. You can put this subscribe module
anywhere on your site.

Another commonly used module would be a search box you wish to be present throughout your
site. This is a small piece of re-usable HTML that can be placed anywhere you like and in
different locations on a template-by-template basis. This allows one site to have the module in
the top left of their template, for instance, and another site to have it in the right side-bar.

Hubzero Modules (front-end)

mod_application_env
mod_events_cal
mod_events_latest
mod_featuredmember
mod_featuredquestion
mod_featuredresource
mod_feed_youtube
mod_findresources
mod_googleanalytics
mod_hubzilla
mod_incremental_registration
mod_latestdiscussions
mod_mycontributions
mod_myfavorites
mod_mygroups
mod_mymessages

 74 / 225

WEB DEVELOPERS

mod_mypoints
mod_myprofile
mod_myquestions
mod_mysessions
mod_mysubmissions
mod_mytickets
mod_mytools
mod_mywishes
mod_notices
mod_polltitle
mod_popularfaq
mod_popularquestions
mod_quicktips
mod_quotes
mod_randomquote
mod_rapid_contact
mod_recentquestions
mod_reportproblems
mod_resourcemenu
mod_slideshow
mod_sliding_panes
mod_spotlight
mod_tagcloud
mod_toptags
mod_twitterfeed
mod_whatsnew
mod_wishvoters
mod_xwhosonline
mod_youtube

Hubzero Modules (back-end/administrative)

mod_dashboard

Plugins

Joomla! plugins serve a variety of purposes. As modules enhance the presentation of the final
output of the Web site, plugins enhance the data and can also provide additional, installable
functionality. Joomla! plugins enable you to execute code in response to certain events, either
Joomla! core events or custom events that are triggered from your own code. This is a powerful
way of extending the basic Joomla! functionality.

Hubzero Plugins

citation

 75 / 225

WEB DEVELOPERS

bibtex
default
endnote

content
xhubtags

cron
members
support

groups
blog
calendar
forum
members
messages
projects
resources
wiki
wishlist

hubzero
autocompleter
comments
imagecaptcha
mathcaptcha
wikieditortoolbar
wikieditorwykiwyg
wikiparser

members
blog
contributions
favorites
groups
messages
points
profile
projects
resources
resume
topics
usage

projects
blog
files
notes
team
todo

resources

 76 / 225

WEB DEVELOPERS

about
abouttool
citations
favorites
questions
recommendations
related
reviews
share
sponsors
supportingdocs
usage
versions
wishlist

support
answers
blog
captcha
comments
kb
resources
transfer
wishlist

system
hubzero
indent
jquery
xfeed

tags
answers
blogs
citations
events
forum
groups
kb
members
resources
support
topics

usage
chart
domainclass
domains
maps
overview

 77 / 225

WEB DEVELOPERS

partners
region
tools

whatsnew
content
events
kb
resources
topics

xmessage
email
handler
im
internal
rss
smstxt

ysearch
blogs
citations
content
events
forum
kb
members
questions/li>
resources
sitemap
sortcourses
sortevents
suffixes
topics
weightcontributor
weighttitle
weighttools
wishlists

Templates

A template is a series of files within the Joomla! CMS that control the presentation of the
content. The template is not a website; it's also not considered a complete website design. The
template is the basic foundation design for viewing your website. To produce the effect of a
"complete" website, the template works hand-in-hand with the content stored in the database.

Each hub comes with default templates for both the administrator area and the front-end site.

 78 / 225

WEB DEVELOPERS

administrator - hubbasicadmin
site - hubbasic2012

Languages

Probably the most basic extensions are languages. Languages can be packaged in two ways,
either as a core package or as an extension package. In essence, these files consist key/value
pairs, these pairs provide the translation of static text strings which are assigned within the
Joomla! source code. These language packs will affect both the front and administrator side.
Note: these language packs also include an XML meta file which describes the language and
font information to use for PDF content generation.

Conclusion

If the difference between the three types of extensions is still not completely clear, then it is
advisable to go to the admin pages of your Joomla! installation and check the components
menu, the module manager and the plugin manager. Joomla! comes with a number of core
components, modules and plugins. By checking what theyâ€™re doing, the difference between
the three types of building blocks should become clear. You can also check out the official
Joomla! extensions page. Browse through the extension categories and youâ€™ll be amazed
about the extension possibilities you have for your site.

 79 / 225

WEB DEVELOPERS

Installing

Installing From Package

Warning: Unlike a typical Joomla! install, most HUBs do not have public write access to the
various extensions directories. Using this method may fail as a result. Contact your system
administrator for any necessary changes.

Joomla! provides a convenient Installer utility in the administrative back-end. From here, one
can install new modules that have been packaged as .zip files. The installer moves all the
necessary files to their appropriate locations and creates any database entries needed.

Note: There is usually an upper limit to the size of files that can be uploaded within the web
server itself. This limit is set in the PHP configuration file and may differ between web servers
and hosts. Current HUB installs set the limit to 100MB. This limit cannot be altered from within
Joomla!. Contact your system administrator for help if needed.

1. Log in to the administrative back-end of the HUB you wish to install the module on.
2. Once logged-in navigate to the Extensions Installer. This can be found from the main

menu by following the "Install/Uninstall" option found in the drop-down under
"Extensions".

3. Under "Upload Package File", click on the "Browse" (note: some browsers/OSes may
have alternate wording) button. This will open the File Upload dialogue window.
Navigate to the location of the desired package file on the local hard drive. Select the
extension file and click the Open button. The dialogue window will disappear and the
path to, and name of, the extension file will appear in the File Upload field.

4. Click the "Upload File & Install" button to complete the transfer and installation of a copy
of the extension files from the local computer to the /yourhub/{ExtensionType}/ directory
tree. Note: Any language files packaged with the module will be moved to their
respective sub-directories of the /yourhub/language/ directory.

Installing From Directory

Joomla! provides a convenient Installer utility in the administrative back-end. From here, one
can install new modules from an existing directory on the server. The installer moves all the
necessary files to their appropriate locations and creates any database entries needed.

1. If the module is packaged as a .zip file, unpack it onto the local hard drive before
uploading.

2. Upload the entire contents of the module via SSH/sFTP. Ideally the file should be
transferred to the
/www/yourhub/administrator/components/com_installer/module/yourmodulename
directory of Joomla!.

 80 / 225

WEB DEVELOPERS

See Accessing Files for further details on how to use SSH/sFTP.

3. Log in to the administrative back-end of the HUB.
4. Once logged-in navigate to the Extensions Installer. This can be found from the main

menu by following the "Install/Uninstall" option found in the drop-down under
"Extensions".

5. Under "Install from Directory" enter the exact location of the module file (it must be the
absolute location) in this example:
/www/yourhub/administrator/components/com_installer/module/yourmodulename.

6. Click the "Install" button to complete the installation. The appropriate module files will be
moved to the /yourhub/modules/ directory tree. Note: Any language files packaged with
the module will be moved to their respective sub-directories of the /yourhub/language/
directory.

Installing By Hand

Installing an extension by hand requires a few more steps than the Joomla! Extensions Installer
but is still a fairly easy and quick process.

1. If the extension is packaged as a .zip file, extract the files to a location on your local
machine.

2. Upload the entire contents of the extension, except language files, via SSH/sFTP to the
/yourhub/{ExtensionType}/ directory. Any language files associated with the extension
must be copied to their respective sub-directories of the /yourhub/language/ directory.

Components are unique in that they will typically have files installed in two locations:
/components and /administrator/components.

Extension Type Install Location
Component /yourhub/components/{ExtensionName}

/yourhub/administrator/components/{Extensi
onName}

Module /yourhub/modules/{ExtensionName}
Plugin /yourhub/plugins/{PluginType}/
Template /yourhub/templates/{ExtensionName}

See Accessing Files for further details on how to use SSH/sFTP.

3. Log in to the administrative back-end of the HUB.

4. Components

 81 / 225

/documentation/1.2.0/webdevs/index.fileaccess
/documentation/1.2.0/webdevs/index.fileaccess

WEB DEVELOPERS

1. Components do not technically need a database entry to function in their
simplest form. However, an entry is needed if one wishes to use parameters or
have the component appear under the "Components" list in the administrative
back-end. This must be done by hand via MySQL command-line, some form of
MySQL database GUI, or executing a PHP script. A sample SQL is provided
below:

INSERT INTO #__components(
 `id`,
 `name`,
 `link`,
 `menuid`,
 `parent`,
 `admin_menu_link`,
 `admin_menu_alt`,
 `option`,
 `ordering`,
 `admin_menu_img`,
 `iscore`,
 `params`,
 `enabled`
)
VALUES(
 '',
 'My Component',
 '',
 0,
 0,
 'option=com_mycomponent',
 'My Component',
 'com_mycomponent',
 0,
 'js/ThemeOffice/component.png',
 0,
 '',
 1
);

See Direct Database Access for further details on how to access a HUB's
database via command-line or GUI utility.

Modules

 82 / 225

/documentation/1.2.0/webdevs/index.databaseaccess

WEB DEVELOPERS

1. Once logged-in navigate to the Modules Manager. This can be found from the
main menu by following the "Modules Manager" option found in the drop-down
under "Extensions".

2. Click the "New" button in the toolbar. This will present you with a list of all
available modules, including those with existing directories but no database
entries (such as the one you just copied to /yourhub/modules/).

3. Find the name of your newly added module and click its radio button. Once
selected, click the "Next" button in the toolbar. This will take you to an "edit
module" screen where you may enter a title, adjust parameters, select a position,
etc.

4. Enter a title, adjust parameters, select a position, and enter any other necessary
information. Click "Save" in the toolbar.

Plugins

1. Unlike modules, there is no convenient Joomla! utility to create the necessary
database entry for us. This must be done by hand via MySQL command-line,
some form of MySQL database GUI, or executing a PHP script. A sample SQL is
provided below:

INSERT INTO #__extensions(
 `extension_id`,
 `name`,
 `type`,
 `element`,
 `folder`,
 `client_id`,
 `enabled`,
 `access`,
 `protected`,
 `manifest_cache`,
 `params`,
 `custom_data`,
 `system_data`,
 `checked_out`,
 `checked_out_time`,
 `ordering`,
 `state`
)
VALUES(
 '',
 'System - Hello World',
 'plugin',
 'helloworld',
 'system',
 0,
 1,

 83 / 225

WEB DEVELOPERS

 1,
 0,
 '',
 '',
 '',
 '',
 0,
 '0000-00-00 00:00:00',
 0,
 0
);

See Direct Database Access for further details on how to access a HUB's
database via command-line or GUI utility.

Templates

1. Once logged-in navigate to the Templates Manager. This can be found from the
main menu by following the "Template Manager" option found in the drop-down
under "Extensions".

2. Here you will be presented with a list of available templates. Your newly added
template should be available. To make it the default template of the site, select it
by clicking the radio button next to its name.

3. Click the "Default" button to make the template the default.

 84 / 225

/documentation/1.2.0/webdevs/index.databaseaccess

WEB DEVELOPERS

Parameters

Overview

Standard parameter types

There are 21 different standard parameter types supported for all extension types (templates,
components, modules and plugins). This section gives a brief description of each parameter
type, in alphabetical order. Full details of each parameter type are given on the following pages.

calendar provides a text box for entry of a date. An icon next to the text box provides a
link to a pop-up calendar, which can also be used to enter the date value.
category provides a drop down list of categories from a given section.
editors provides a drop down list of the available WYSIWYG editors.
filelist provides a drop down list of files from a specified directory.
folderlist provides a drop down list of folders from a specified directory.
helpsites provides a drop down list of the help sites for your Joomla installation.
hidden provides a hidden field for saving a parameter whose value cannot be altered
directly by a user in the Administrator (it can be altered in code or by editing the
params.ini file).
imagelist provides a drop down list of image files in a specified directory.
languages provides a drop down list of the installed languages for the Front-end or
Back-end.
list provides a drop down list of custom-defined entries.
menu provides a drop down list of the available menus from your Joomla site.
menuitem provides a drop down list of the available menu items from your Joomla site.
password provides a text box for entry of a password. The password characters will be
obscured as they are entered.
radio provides radio buttons to select different options.
spacer provides a visual separator between parameter field elements. It is purely a
visual aid and no parameter value is stored.
sql provides a drop down list of entries obtained by running a query on the Joomla
Database. The first results column returned by the query provides the values for the
drop down box.
text provides a text box for data entry.
textarea provides a text area for entry of multi-line text.
timezones provides a drop down list of time zones.
usergroup provides a drop down list of user groups.

 85 / 225

WEB DEVELOPERS

Uninstalling

Overview

If you wish to uninstall an extension on your Joomla! site, then follow these simple steps:

1. Select "Extensions" and then "Install / Uninstall" from the drop-down menu
2. Select the type of extension you wish to uninstall. You will have the choice between

Components, Modules, Plugins, Languages and Templates.
3. Find the extension you wish to uninstall and check the checkbox to the left of the

extension title.
4. In the upper-right corner of the screen, press "Uninstall"

It's as simple as that. If Joomla! can't uninstall the extension, you will be prompted with an error
message. If this happens, it's most likely to be caused by the extension. As extensions are
developed by third-party volunteers, you will have to try to get support from the developers of
the specific extension.

 86 / 225

WEB DEVELOPERS

Languages

Overview

To create your own language file it is necessary that you use the exact contents of the default
language file and translate the contents of the define statements. Language files are INI files
which are readable by standard text editors and are set up as key/value pairs.

Working With INI Files

INI files have several restrictions. If a value in the ini file contains any non-alphanumeric
characters it needs to be enclosed in double-quotes ("). There are also reserved words which
must not be used as keys for ini files. These include: NULL, yes, no, TRUE, and FALSE. Values
NULL, no and FALSE results in "", yes and TRUE results in 1. Characters {}|&~![()" must not be
used anywhere in the key and have a special meaning in the value. Do not use them as it will
produce unexpected behavior.

Files are named after their internationally defined standard abbreviation and may include a
locale suffix, written as language_REGION. Both the language and region parts are abbreviated
to alphabetic, ASCII characters. A user from the USA would expect the language English and
the region USA, yielding the locale identifier "en_US". However, a user from the UK may expect
a region of UK, yielding "en_UK".

Setup

As previously mentioned, language files are setup as key/value pairs. A key is used within the
widget's view and the translator retrieves the associated string for the given language. The
following code is an extract from a typical widget language file.

; Module - Example (en_US)
MOD_EXAMPLE_HERE_IS_LINE_ONE = "Here is line one"
MOD_EXAMPLE_HERE_IS_LINE_TWO = "Here is line two"
MOD_EXAMPLE_MYLINE = "My Line"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of {ExtensionPrefix}_{WidgetName}_{TextName} for naming.

Table 1: Translation key prefixes for the various extensionsExtension Type Key Prefix
Component COM_

 87 / 225

WEB DEVELOPERS

Extension Type Key Prefix
Module MOD_
Plugin PLGN_
Template TMPL_

Adhering to this naming convention is not required but is strongly recommended as it can help
avoid potential translation collisions. Since a component can potentially have modules loaded
into it, the possibility of a widget and a module having the same translation key arises. To
illustrate this, we have the following example of a component named mycomponent that loads a
module named mymodule.

The language files for both:

; mymodule en_US.ini
MYLINE = "Your Line"

; mycomponent en_US.ini
MYLINE = "My Line"

The layout files for both:

<!-- mymodule layout -->
<php echo JText::_('MYLINE'); ?>

<!-- mycomponent layout -->
<div>
 <!-- Load the module -->
 <php echo XModuleHelper::renderModule('mymodule'); ?>
 <!-- Translate some component text -->
 <php echo JText::_('MYLINE'); ?>
</div>

 88 / 225

WEB DEVELOPERS

Outputs:

<div>
 <!-- Load the module -->
 Your Line
 <!-- Translate some component text -->
 Your Line
</div>

Since the module is loaded in the component view, i.e. after the component's translation files
have been loaded, the module's instance of MYLINE overwrites the existing MYLINE from the
component. Thus, the view outputs "Your Line" for the component translation instead of the
expected "My Line". Using the HUBzero naming convention of adding component and module
name prefixes helps avoid such errors:

The language files for both:

; mymodule en-US.ini
MOD_MYMODULE_MYLINE = "Your Line"

; mycomponent en-US.ini
COM_MYCOMPONENT_MYLINE = "My Line"

The view files for both:

<!-- mymodule view -->
<php echo JText::_('MOD_MYMODULE_MYLINE'); ?>

<!-- mycomponent view -->
<div>
 <!-- Load the module -->
 <php echo $this->Widgets()->renderWidget('mywidget'); ?>
 <!-- Translate some module text -->
 <php echo JText::_('COM_MYCOMPONENT_MYLINE'); ?>

 89 / 225

WEB DEVELOPERS

</div>

Outputs:

<div>
 <!-- Load the widget -->
 Your Line
 <!-- Translate some module text -->
 My Line
</div>

To Further avoid potential collisions as it is possible to have a component and module with the
same name, module translation keys are prefixed with MOD_ and component translation keys
with COM_.

Translating Text

A translate helper (JText) is available in all views and the appropriate language file for an
extension is preloaded when the extension is instantiated. This is all done automatically and
requires no extra work on the developer's part to load and parse translations.

Below is an example of accessing the translate helper:

<p><?php echo JText::_("MOD_EXAMPLE_MY_LINE"); ?></p>

Strings or keys not found in the current translation file will output as is.

Further Help

For further help with language files, including creating and distributing your own translations to
existing extensions, see Joomla!'s documentation.

 90 / 225

http://docs.joomla.org/How_to_distribute_languages_for_native_Joomla%21_1.5_extensions

WEB DEVELOPERS

Components

Overview

The largest and most complex of the extension types, a component is in fact a separate
application. You can think of a component as something that has its own functionality, its own
database tables and its own presentation. So if you install a component, you add an application
to your website. Examples of components are a forum, a blog, a community system, a photo
gallery, etc. You could think of all of these as being a separate application. Everyone of these
would make perfectly sense as a stand-alone system. A component will be shown in the main
part of your website and only one component will be shown. A menu is then in fact nothing more
then a switch between different components.

Throughout these articles, we will be using {ComponentName} to represent the name of a
component that is variable, meaning the actual component name is chosen by the developer.
Notice also that case is important. {componentname} will refer to the lowercase version of
{ComponentName}, eg. "CamelCasedController" -> "camelcasedcontroller". Similarly,
{ViewName} and {viewname}, {ModelName} and {modelname}, {ControllerName} and
{controllername}.

We also strongly encourage developers to take a look at Joomla!'s documentation.

Directory Structures & Files

Components follow the Model-View-Controller (MVC) design pattern. This pattern separates the
data gathering (Model), presentation (View) and user interaction (Controller) activities of a
module. Such separation allows for expanding or revising properties and methods of one
section without requiring additional changes to the other sections.

In its barest state, no database entry or other setup is required to "install" a component. Simply
placing the component into the /components directory will make it available for use. However, if
a component requires the installation of database tables or configuration (detailed in the
config.xml file), then an administrator must install the component using one of the installation
options in the administrative back-end.

Note: Components not installed via one of the installation options or without a database entry in
the #__components table will not appear in the administrative list of available components.

To illustrate the typical component directory structures and files:

/hubzero
 /administrator
 /components
 /com_example

 91 / 225

http://docs.joomla.org/Developers#Components

WEB DEVELOPERS

 ...
 /components
 /com_example
 /controllers
 example.php
 /models
 foo.php
 /views
 /index
 /tmpl
 display.php
 display.xml
 example.php
 router.php

In the above example, all component related files and sub-directories are split between the
administrator components and front-end components. In both cases, the files are contained
within directories titled "com_example". Some directories and files are optional but, for this
example, we've included the most common setup.

The file structure in the administrative portion of the component is exactly the same as in the
front side. Note that the view, models, controllers etc. of the front and admin parts are
completely separated, and have nothing to do with each other - the front part and the admin part
can be thought of as two different components! A view in the
/administrator/components/com_example folder may have a counterpart with the same name in
the /components/com_example folder, yet the two views have nothing in common but their
name.

Directory & File Explanation

/com_{componentname}/{componentname}.php
This is the component's main file and entry point for the front-end part.

/com_{componentname}/controller.php
This file holds the default frontend controller, which is a class called
"{ComponentName}Controller". This class must extend the base class "JController".

/com_{componentname}/views

This folder holds the different views for the component.

/com_{componentname}/views/{viewname}
This folder holds the files for the view {ViewName}.

/com_{componentname}/views/{viewname}/view.html.php

 92 / 225

WEB DEVELOPERS

This file is the entry point for the view {ViewName}. It should declare the class
{ComponentName}View{ViewName}. This class must extend the base class
"JView".

/com_{componentname}/views/{viewname}/tmpl

This folder holds the template files for the view {ViewName}.

/site/views/{viewname}/tmpl/default.php
This is the default template for the view {ViewName}.

/com_{componentname}/models

This folder holds additional models, if needed by the application.

/com_{componentname}/models/{modelname}.php
This file holds the model class {ComponentName}Model{ModelName}. This
class must extend the base class "JModel". Note that the view named
{ViewName} will by default load a model called {ViewName} if it exists. Most
models are named after the view they are intended to be used with.

/com_{componentname}/controllers

This folder holds additional controllers, if needed by the application.

/com_{componentname}/controllers/{controllername}.php
This file holds the controller class {ComponentName}Controller{ControllerName}.
This class must extend the base class "JController".

Naming Conventions

Classes

The model, view and controller files use the jimport function to load classes from the Joomla!
framework, JModel, JView and JController, respectively. Each class is then extended with a
new class specific to the component.

The base controller class for the site is named {ComponentName}Controller. For the
administrative section, an "s" is added to the ComponentName, giving
{ComponentName}sController. Classnames for additional controllers found within the
controllers/ subdirectory are {ComponentName}Controller{ControllerName} for site/ and
{ComponentName}sController{ControllerName} for admin/.

The view class is named {ComponentName}View{ViewName}.

 93 / 225

WEB DEVELOPERS

The model class is named {ComponentName}Model{ModelName}. Remember that the
{ModelName} and the {ViewName} should be the same.

Reserver Words

There are reserved words, which can't be used in names of classes and components.

An example is word "view" (in any case) for view class (except "view" that must be second part
of that class name). Because first part of view class name is the same as controller class name,
controller class name also can't contain word "view". And because of convension (although
violating of it won't produce an error) controller class name must contain component name, so
component name also can't contain word "view". So components can't be named
"com_reviews", or if thay are, thay must violate naming convention and have different base
controller class name (or have some other hacks).

Examples

Here we have a basic front-end component that simply displays a "Hello, World!" message. We
present it using standard HUBzero methods, which differ from Joomla! in a few key ways. Note,
however, that despite any differences from standard Joomla! methods, all HUBzero methods
will still work on a stock Joomla! 1.5+ install.

Download: Hello World component

In the com_drwho example component, we demonstrate working with a few simple database
tables. The example shows how to output a listing (with pagination), a form for entering new
items, and saving to the database.

Other examples included are using multiple controllers, using models, handling errors, adding
some security, and pushing assets (e.g., CSS) to the document.

Download: Dr Who front-end (site) component

 94 / 225

/app/site/documentation/1-2-0/examples/com_hello.zip
/app/site/documentation/1-2-0/examples/com_drwho.zip

WEB DEVELOPERS

Installation

Installing

See Installing Extensions for details.

Uninstalling

See Uninstalling Extensions for details.

 95 / 225

/documentation/1.2.0/webdevs/extensions.installing
/documentation/1.2.0/webdevs/extensions.uninstalling

WEB DEVELOPERS

Manifests

Overview

It is possible to install a component manually by copying the files using an SFTP client and
modifying the database tables. It is more efficient to create a package file in the form on an XML
document that will allow the Joomla! Installer to do this for you. This package file contains a
variety of information:

basic descriptive details about your component (i.e. name), and optionally, a description,
copyright and license information.
a list of files that need to be copied.
optionally, a PHP file that performs additional install and uninstall operations.
optionally, an SQL file which contains database queries that should be executed upon
install/uninstall

Note: All components must be prefixed with com_.

Structure

This XML file just lines out basic information about the template such as the owner, version, etc.
for identification by the Joomla! installer and then provides optional parameters which may be
set in the Module Manager and accessed from within the module's logic to fine tune its
behavior. Additionally, this file tells the installer which files should be copied and installed.

A typical component manifest:

<?xml version="1.0" encoding="utf-8"?>
<install type="component" version="1.5.0">
 <name>hello_world</name>
 <!-- The following elements are optional and free of formatting contt
raints -->
 <creationDate>2007 01 17</creationDate>
 <author>John Doe</author>
 <authorEmail>john.doe@example.org</authorEmail>
 <authorUrl>http://www.example.org</authorUrl>
 <copyright>Copyright Info</copyright>
 <license>License Info</license>
 <!-- The version string is recorded in the components table -->
 <version>Component Version String</version>
 <!-- The description is optional and defaults to the name -->
 <description>Description of the component ...</description>

 <!-- Custom Install Script to execute -->

 96 / 225

WEB DEVELOPERS

 <!-- Note: This will be copied from the root of the installation pack
age to the administrator directory automatically -->
 <installfile>install.eventlist.php</installfile>

 <!-- Custom Uninstall Script to execute -->
 <!-- Note: This will be copied from the root of the installation pack
age to the administrator directory automatically -->
 <uninstallfile>uninstall.eventlist.php</uninstallfile>

 <!-- Install Database Section -->
 <install>
 <sql>
 <file driver="mysql" charset="utf8">install.mysql.utf8.sql</file>
 <file driver="mysql">install.mysql.nonutf8.sql</file>
 </sql>
 </install>

 <!-- Uninstall Database Section -->
 <uninstall>
 <sql>
 <file driver="mysql" charset="utf8">uninstall.mysql.utf8.sql</file>
 <file driver="mysql">uninstall.mysql.nonutf8.sql</file>
 </sql>
 </uninstall>

 <!-- Site Main File Copy Section -->
 <files>
 <filename>index.html</filename>
 <filename>test.php</filename>
 <folder>views</folder>
 </files>

 <!-- Site Main Language File Copy Section -->
 <languages>
 <language tag="en-GB">en-GB.com_test.ini</language>
 <language tag="de-DE">de-DE.com_test.ini</language>
 <language tag="nl-NL">nl-NL.com_test.ini</language>
 </languages>

 <!-- Site Main Media File Copy Section -->
 <media destination="com_test">
 <filename>image.png</filename>
 <filename>flash.swf</filename>
 </media>

 <administration>

 97 / 225

WEB DEVELOPERS

 <!-- Administration Menu Section -->
 <menu img="components/com_test/assets/test-16.png">EventList</menu>
 <submenu>
 <!-- Note that all & must be escaped to & for the file to be valid
XML and be parsed by the installer -->
 <menu link="option=com_helloworld&task=hello&who=world">Hello World
!</menu>
 <!-- Instead of link you can specify individual link attributes -->
 <menu img="icon" task="hello" controller="z" view="a" layout="b" su
b="c">Hello Again!</menu>
 <menu view="test" layout="foo">Testing Foo Layout</menu>
 </submenu>

 <!-- Administration Main File Copy Section -->
 <!-- Note the folder attribute: This attribute describes the folder
 to copy FROM in the package to install therefore files copied
 in this section are copied from /admin/ in the package -->
 <files folder="admin">
 <filename>index.html</filename>
 <filename>admin.test.php</filename>
 </files>

 <!-- Administration Language File Copy Section -->
 <languages folder="admin">
 <language tag="en-GB">en-GB.com_test.ini</language>
 <language tag="de-DE">de-DE.com_test.ini</language>
 <language tag="nl-NL">nl-NL.com_test.ini</language>
 </languages>

 <!-- Administration Main Media File Copy Section -->
 <media folder="admin" destination="com_test">
 <filename>admin-image.png</filename>
 <filename>admin-flash.swf</filename>
 </media>
 </administration>
</install>

 98 / 225

WEB DEVELOPERS

Entry Point

Overview

Joomla! is always accessed through a single point of entry: index.php for the Site Application or
administrator/index.php for the Administrator Application. The application will then load the
required component, based on the value of 'option' in the URL or in the POST data. For our
component, the URL would be:

index.php?option=com_hello&view=hello

This will load our main file, which can be seen as the single point of entry for our component:
components/com_hello/hello.php.

Implementation

(preferred) HUBzero Methodology

HUBzero components differ in subtle, but key ways from standard Joomla! components. This is,
in part, due to legacy issues. Some changes are made to aid in development while others may
simply be a difference in philosophy. Note, however, that no differences require hacking or
altering Joomla! in any way and HUBzero methodologies will run on any stock Joomla! install.

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

// Check if debugging is turned on
// If it is, we'll turn on PHP error reporting so we can more clearly
see our PHP bugs
if (JFactory::getConfig()->getValue('config.debug'))
{
 error_reporting(E_ALL);
 @ini_set('display_errors','1');
}

if (version_compare(JVERSION, '1.6', 'lt'))
{
 $jacl = JFactory::getACL();
 $jacl->addACL($option, 'manage', 'users', 'super administrator');
 $jacl->addACL($option, 'manage', 'users', 'administrator');
 $jacl->addACL($option, 'manage', 'users', 'manager');

 99 / 225

WEB DEVELOPERS

}

jimport('joomla.application.component.helper');

// Get the requested controller
$controllerName = JRequest::getCmd('controller', 'one');
// Ensure the controller exists
if (!file_exists(JPATH_COMPONENT . DS . 'controllers' . DS . $controll
erName . '.php'))
{
 $controllerName = 'one';
}
require_once(JPATH_COMPONENT . DS . 'controllers' . DS . $controllerNa
me . '.php');
$controllerName = 'ExampleController' . ucfirst(strtolower($controller
Name));

// Instantiate controller
$controller = new $controllerName();
// Execute whatever task(s)
$controller->execute();
// Redirect as needed
$controller->redirect();

Here, you can see we've added a few things and made one subtle change in calling the
execute() method. First, we added some lines that check if site debugging is turned on. If so, we
turn on PHP error reporting. This can aid greatly in development.

Next, we added the jimport call to include some Joomla component helpers. This is done
specifically because HUBzero controllers do not extend JController. JController does some
autoloading and initial setup for Joomla! components and since we're not employing it, we need
to do some class loading and setup of our own.

Then we look for a requested controller name. There is a default set in case none has been
passed or if the requested controller is not found. With the controller name, we build the class
name for the controller following the standard camel-cased pattern of {Component
name}Controller{Controller name}

Finally, we removed the JRequest::getWord('task') being passed to the execute() method.
HUBzero controllers handle the task request within the execute() method, rather than passing
the task to it.

Joomla! 1.5 Methodology

 100 / 225

WEB DEVELOPERS

The code for this file is fairly typical across components.

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

// Require the base controller
require_once(JPATH_COMPONENT.DS.'controller.php');

// Require specific controller if requested
if ($controller = JRequest::getWord('controller')) {
 $path = JPATH_COMPONENT.DS.'controllers'.DS.$controller.'.php';
 if (file_exists($path)) {
 require_once $path;
 } else {
 $controller = '';
 }
}

// Create the controller
$classname = 'HelloController'.$controller;
$controller = new $classname();

// Perform the Request task
$controller->execute(JRequest::getWord('task'));

// Redirect if set by the controller
$controller->redirect();

The first statement is a security check.

JPATH_COMPONENT is the absolute path to the current component, in our case
components/com_hello. If you specifically need either the Site component or the Administrator
component, you can use JPATH_COMPONENT_SITE or
JPATH_COMPONENT_ADMINISTRATOR.

DS is the directory separator of your system: either '/' or '\'. This is automatically set by the
framework so the developer doesn't have to worry about developing different versions for
different server OSs. The 'DS' constant should always be used when referring to files on the
local server.

After loading the base controller, we check if a specific controller is needed. In this component,

 101 / 225

WEB DEVELOPERS

the base controller is the only controller, but we will leave this conditional check "in place" for
future use.

JRequest:getWord() finds a word variable in the URL or the POST data. So if our URL is
index.php?option=com_hello&controller=controller_name, then we can retrieve our controller
name in our component using: echo JRequest::getWord('controller');

Now we have our base controller 'HelloController' in com_hello/controller.php, and, if needed,
additional controllers like 'HelloControllerController1' in com_hello/controllers/controller1.php.
Using this standard naming scheme will make things easy later on:
'{Componentname}{Controller}{Controllername}'

After the controller is created, we instruct the controller to execute the task, as defined in the
URL: index.php?option=com_hello&task=sometask. If no task is set, the default task 'display'
will be assumed. When display is used, the 'view' variable will decide what will be displayed.
Other common tasks are save, edit, new...

The controller might decide to redirect the page, usually after a task like 'save' has been
completed. This last statement takes care of the actual redirection.

The main entry point (hello.php) essentially passes control to the controller, which handles
performing the task that was specified in the request.

Note that we don't use a closing php tag in this file: ?>. The reason for this is that we will not
have any unwanted whitespace in the output code. This is default practice since Joomla! 1.5,
and will be used for all php-only files.

 102 / 225

WEB DEVELOPERS

Controllers

Overview

The controller is responsible for responding to user actions. In the case of a web application, a
user action is (generally) a page request. The controller will determine what request is being
made by the user and respond appropriately by triggering the model to manipulate the data
appropriately and passing the model into the view. The controller does not display the data in
the model, it only triggers methods in the model which modify the data, and then pass the model
into the view which displays the data.

Most components have two controllers: one for the front-end and one for the back-end.

Creating the Front-end Controller

Most HUBzero component controllers will differ from Joomla! in some important ways. Some
changes are made to aid in development while others may simply be a difference in philosophy.
Note, however, that no differences require hacking or altering Joomla! in any way and HUBzero
methodologies will run on any stock Joomla! install.

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

ximport('Hubzero_Controller');

class HelloControllerOne extends Hubzero_Controller
{
 public function displayTask()
 {
 // Pass the view any data it may need
 $this->view->greeting = 'Hello, World!';

 // Set any errors
 if ($this->this->getError())
 {
 foreach ($this->getErrors() as $error)
 {
 $view->setError($error);
 }
 }

 // Output the HTML
 $this->view->display();

 103 / 225

WEB DEVELOPERS

 }
}

There doesn't appear to be much going on here due to some of the auto-setup the
Hubzero_Controller class brings.

The first, and most important, difference to note is that we're extending Hubzero_Controller
rather than JController. Since we're not employing JController, how tasks and views are
determined, built, and executed differ from standard Joomla components.

Note: Hubzero_Controller extends JObject, so all its methods and properties are available.

One key difference is how the execute() method is handled. In Joomla!, any public method is
assumed to be an executable task. In the HUBzero method, the list of available tasks is built
from only methods that are 1) public and 2) end in "Task". When calling a task, the "Task" suffix
should be left off. For example:

// This route
JRoute::_('index.php?option=com_example&task=other');

// Refers to
....
public function otherTask()
{
 ...
}
....

If no task is supplied, the controller will default to a task of "display". The default task can be set
in the controller:

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

ximport('Hubzero_Controller');

class HelloControllerOne extends Hubzero_Controller
{
 public function execute()

 104 / 225

WEB DEVELOPERS

 {
 // Set the default task
 $this->registerTask('__default', 'mydefault');

 // Set the method to execute for other tasks
 // The following can be called by task=delete and will execute the r
emoveTask method
 $this->registerTask('delete', 'remove'); // (task, method name);

 parent::execute();
 }
 ...
}

Each controller extending Hubzero_Controller will have the following properties available:

_option - String, component name (e.g., com_example)
_controller - String, controller name
view - Object (JView)
config - Object (JParamter), component config
database - Object (JDatabase)
juser - Object (JUser)

class HelloControllerOne extends Hubzero_Controller
{
 public function displayTask()
 {
 $this->view->userName = $this->juser->get('name');
 $this->view->display();
 }
}

Auto-generation of views

The Hubzero_Controller automatically instantiates a new JView object for each task and
assigns the component ($option) and controller ($controller) names as properties for use in your
view. Controller names map to view directory and task names directly map to view names.

 /{component}
 /views

 105 / 225

WEB DEVELOPERS

 /one (controller name)
 /tmpl
 /display.php
 /remove.php

Example usage within a view:

<p>This is component <?php echo $this->option; ?> using controller: <?
php echo $this->controller; ?></p>

Changing view layout

As mentioned above, the view object is auto-generated with the same layout as the current
$task. There are times, however, when you may want to use a different layout or are executing
a task after directing through from a previous task (example: saveTask encountering an error
and falling through to the editTask to display the edit form with error message). The layout can
easily be switched with the setLayout method.

 /{component}
 /views
 /one (controller name)
 /tmpl
 /display.php
 /world.php

//-------------
//-------------

class HelloControllerOne extends Hubzero_Controller
{
 public function displayTask()
 {
 // Set the layout to 'world.php'
 $this->view->setLayout('world');

 // Output the HTML
 $this->view->display();
 }
}

 106 / 225

WEB DEVELOPERS

Any assigned data or vars to the view will not be effected.

 107 / 225

WEB DEVELOPERS

Helpers

Overview

A helper class is a class filled with static methods and is usually used to isolate a "useful"
algorithm. They are used to assist in providing some functionality, though that functionality isn't
the main goal of the application. They're also used to reduce the amount of redundancy in your
code.

Implementation

Helper classes are stored in the helper sub-directory of your component directory. Naming
convention typically follows a pattern of {ComponentName)Helper(HelperName}. Therefore, our
helper class is called HelloHelperOutput.

Here's our com_hello/helpers/output.php helper class:

<?php
// No direct access

defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.helper');

/**
 * Hello World Component Helper
 *
 * @package Joomla.Tutorials
 * @subpackage Components
 */
class HelloHelperOutput
{
 /**
 * Method to make all text upper case
 *
 * @access public
 */
 public function shout($txt='')
 {
 return strToUpper($txt).'!';
 }
}

 108 / 225

WEB DEVELOPERS

We have one method in this class that takes all strings passed to it and returns them uppercase
with an exclamation point attached to the end. To use this helper, we do the following:

class HelloViewHello extends JView
{
 function display($tpl = null)
 {
 include_once(JPATH_COMPONENT.DS.'helpers'.DS.'output.php');

 $greeting = HelloHelperOutput::shout("Hello World");
 $this->assignRef('greeting', $greeting);

 parent::display($tpl);
 }
}

 109 / 225

WEB DEVELOPERS

Models

Overview

The concept of model gets its name because this class is intended to represent (or 'model')
some entity.

Creating A Model

All Joomla! models extend the JModel class. The naming convention for models in the Joomla!
framework is that the class name starts with the name of the component, followed by 'model',
followed by the model name. Therefore, our model class is called HelloModelHello.

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.model');

/**
 * Hello Model
 */
class HelloModelHello extends JModel
{
 /**
 * Gets the greeting
 * @return string The greeting to be displayed to the user
 */
 function getGreeting()
 {
 return 'Hello, World!';
 }
}

You will notice a line that starts with jimport. The jimport function is used to load files from the
Joomla! framework that are required for our component. This particular statement will load the
file /libraries/joomla/application/component/model.php. The '.'s are used as directory separators
and the last part is the name of the file to load. All files are loaded relative to the libraries
directory. This particular file contains the class definition for the JModel class, which is
necessary because our model extends this class.

 110 / 225

WEB DEVELOPERS

Using A Model

The Joomla! framework is setup in such a way that the controller will automatically load the
model that has the same name as the view and will push it into the view. We can easily retrieve
a reference to our model using the JView::getModel() method. If the model had not followed this
convention, we could have passed the model name to JView::getModel().

Here's an example of using a model with our Hello component (com_hello).

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.view');

/**
 * HTML View class for the HelloWorld Component
 *
 * @package HelloWorld
 */

class HelloViewHello extends JView
{
 function display($tpl = null)
 {
 $model = &$this->getModel();
 $greeting = $model->getGreeting();
 $this->assignRef('greeting', $greeting);

 parent::display($tpl);
 }
}

 111 / 225

WEB DEVELOPERS

Languages

Setup

Language files are setup as key/value pairs. A key is used within the component's code and the
translator retrieves the associated string for the given language. The following code is an extract
from a typical component language file.

; Module - Hellow World (en-US)
COM_HELLOWORLD_LABEL_USER_COUNT = "User Count"
COM_HELLOWORLD_DESC_USER_COUNT = "The number of users to display"
COM_HELLOWORLD_RANDOM_USERS = "Random Users for Hello World"
COM_HELLOWORLD_USER_LABEL = "%s is a randomly selected user"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of COM_{ComponentName}_{Text} for naming. Adhering to
this naming convention is not required but is strongly recommended as it can help avoid
potential translation collisions.

See the Languages overview for details.

Translating Text

Below is an example of accessing the translate helper:

<p><?php echo JText::_("COM_EXAMPLE_MY_LINE"); ?></p>

JText::_ is used for simple strings.
JText::sprintf is used for strings that require dynamic data passed to them for variable
replacement.

Strings or keys not found in the current translation file will output as is.

See the Languages overview for details.

 112 / 225

/documentation/1.2.0/webdevs/extensions.languages
/documentation/1.2.0/webdevs/extensions.languages

WEB DEVELOPERS

Layouts

Directory Structures & Files

Views are written in PHP and HTML and have a .php file extension. View scripts are placed in
/com_{componentname}/views/, where they are further categorized by the /{viewname}/tmpl.
Within these subdirectories, you will then find and create view scripts that correspond to each
controller action exposed; in the default case, we have the view script default.php.

/hubzero
 /components
 /com_{componentname}
 /views
 /{viewname}
 view.html.php
 /tmpl
 default.php

Overriding module and component presentation in templates is further explained in the
Templates: Overrides section.

Creating A View

Joomla! 1.5 Method

The task of the view is very simple: It retrieves the data to be displayed and pushes it into the
template. Data is pushed into the template using the JView::assignRef method.

<?php

// no direct access
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.view');

/**
 * HTML View class for the HelloWorld Component
 *
 * @package HelloWorld
 */

class HelloViewHello extends JView

 113 / 225

/documentation/1.2.0/webdevs/templates.overrides

WEB DEVELOPERS

{
 function display($tpl = null)
 {
 $greeting = "Hello World!";
 $this->assignRef('greeting', $greeting);

 parent::display($tpl);
 }
}

HUBzero Method

Not necessary. Data retrieval and template assignment is handled in the controller.

Creating the Template

Joomla! templates/layouts are regular PHP files that are used to layout the data from the view in
a particular manner. The variables assigned by the JView::assignRef method can be accessed
from the template using $this->{propertyname} (see the template code below for an example).

Our template is very simple: we only want to display the greeting that was passed in from the
view - this file is: views/hello/tmpl/default.php:

<?php

// No direct access
defined('_JEXEC') or die('Restricted access'); ?>
<h1><?php echo $this->greeting; ?></h1>

 114 / 225

WEB DEVELOPERS

Routing

Overview

All components in Joomla! can be accessed through a query string by using the option
parameter which will equate to the name of the component. For example, to access the
"Contacts" component, you could type http://yourhub.org/index.php?option=com_contact.

When SEF URLs are being employed, the first portion after the site name will almost always be
the name of a component. For the URL http://yourhub.org/contact, the first portion after the
slash translates to the component com_contact. If a matching component cannot be found,
routing will attempt to match against an article section, category, and/or page alias.

While not required, most components will have more detailed routing instructions that allow SEF
URLs to be made from and converted back into query strings that pass necessary data to the
component. This is done by the inclusion of a file called router.php.

router.php

Every router.php file has two methods: {ComponentName}BuildRoute() which takes a query
string and turns it into a SEF URL and {ComponentName}ParseRoute() which deconstructs a
SEF URL back into a query string to be passed to the component.

function ExampleBuildRoute(&$query)
{
 $segments = array();

 if (!empty($query['task'])) {
 $segments[] = $query['task'];
 unset($query['task']);
 }
 if (!empty($query['id'])) {
 $segments[] = $query['id'];
 unset($query['id']);
 }
 if (!empty($query['format'])) {
 $segments[] = $query['format'];
 unset($query['format']);
 }

 return $segments;
}

function ExampleParseRoute($segments)

 115 / 225

WEB DEVELOPERS

{
 $vars = array();

 if (empty($segments)) {
 return $vars;
 }
 if (isset($segments[0])) {
 $vars['task'] = $segments[0];
 }
 if (isset($segments[1])) {
 $vars['id'] = $segments[1];
 }
 if (isset($segments[2])) {
 $vars['format'] = $segments[2];
 }

 return $vars;
}

{ComponentName}BuildRoute()

This method is called when using JRoute::_(). JRoute::_() passes the query string (minus the
option={componentname} portion) to the method which returns an array containing the
necessary portions of the URL to be constructed in the order they need to appear in the final
SEF URL.

// $query = 'task=view&id=123&format=rss'
function ExampleBuildRoute(&$query)
{
 $segments = array();

 if (!empty($query['task'])) {
 $segments[] = $query['task'];
 unset($query['task']);
 }
 if (!empty($query['id'])) {
 $segments[] = $query['id'];
 unset($query['id']);
 }
 if (!empty($query['format'])) {
 $segments[] = $query['format'];
 unset($query['format']);
 }

 116 / 225

WEB DEVELOPERS

 return $segments;
}

Will return:

Array(
 'view',
 '123',
 'rss'
);

This will in turn be passed back to JRoute::_() which will construct the final SEF URL of
example/view/123/rss.

{ComponentName}ParseRoute()

This method is automatically called on each page view. It is passed an array of segments of the
SEF URL that called the page. That is, a URL of example/view/123/rss would be separated by
the forward slashes with the first segment automatically being associated with a component
name. The rest are stored in an array and passed to {ComponentName}ParseRoute() which
then associates each segment with an appropriate variable name based on the segment's
position in the array.

function ExampleParseRoute($segments)
{
 $vars = array();

 if (empty($segments)) {
 return $vars;
 }
 if (isset($segments[0])) {
 $vars['task'] = $segments[0];
 }
 if (isset($segments[1])) {
 $vars['id'] = $segments[1];
 }
 if (isset($segments[2])) {
 $vars['format'] = $segments[2];
 }

 117 / 225

WEB DEVELOPERS

 return $vars;
}

Note: Position of segments is very important here. A URL of example/view/123/rss could yield
completely different results than a URL of example/rss/view/123.

 118 / 225

WEB DEVELOPERS

Packaging

Overview

Packaging a component for distribution is relatively easy. All front-end files are places within a
directory called /site and all administration files are placed within a directory called /admin.
Here's what a typical package will look like:

/com_{componentname}
 {componentname}.xml
 /site
 {componentname}.php
 controller.php
 /views
 /{viewname}
 view.html.php
 /tmpl
 default.php
 /models
 {modelname}.php
 /controllers
 {controllername}.php
 /admin
 {componentname}.php
 controller.php
 /views
 /{viewname}
 view.html.php
 /tmpl
 default.php
 /models
 {modelname}.php
 /controllers
 {controllername}.php

Just "zip" up the primary directory into a compressed archive file. When the ZIP file is installed,
the language file is copied to
/language/{LanguageName}/{LanguageName}.{ComponentName}.ini and is loaded each time
the module is loaded. All of the other files are copied to the /components/{ComponentName}
and /administrator/components/{ComponentName}directories of the Joomla! installation.

 119 / 225

WEB DEVELOPERS

Modules

Overview

Modules are extensions which present certain pieces of information on your site. It's a way of
presenting information that is already present. This can add a new function to an application
which was already part of your website. Think about latest article modules, login module, a
menu, etc. Typically you'll have a number of modules on each web page. The difference
between a module and a module is not always very clear for everybody. A module doesn't make
sense as a standalone application, it will just present information or add a function to an existing
application. Take a newsletter for instance. A newsletter is a module. You can have a website
which is used as a newsletter only. That makes perfectly sense. Although a newsletter module
probably will have a subscription page integrated, you might want to add a subscription module
on a sidebar on every page of your website. You can put this subscribe module anywhere on
your site.

Another commonly used module would be a search box you wish to be present throughout your
site. This is a small piece of re-usable HTML that can be placed anywhere you like and in
different locations on a template-by-template basis. This allows one site to have the module in
the top left of their template, for instance, and another site to have it in the right side-bar.

Directory Structure & Files

The directory structure used allows you to separate different MVC applications into self-
contained units. This helps keep related code organized, easy to find, and can make
redistribution as packages considerably easier. To illustrate the typical module directory
structure and files:

/hubzero
 /modules
 /mod_{ModuleName}
 /tmpl
 default.php
 helper.php
 mod_{ModuleName}.php
 mod_{ModuleName}.xml

A Joomla! 1.5 Module is in its most basic form two files: an XML configuration file and a PHP
controller file. Typically, however, a module will also include a view file which contains the HTML
and presentation aspects.

 120 / 225

WEB DEVELOPERS

/tmpl
This directory contains template files.
default.php

This is the module template. This file will take the data collected by
mod_{ModuleName}.php and generate the HTML to be displayed on the page.

helper.php
This file contains the helper class which is used to do the actual work in retrieving the
information to be displayed in the module (usually from the database or some other
source).

mod_{ModuleName}.php
This file is the main entry point for the module. It will perform any necessary initialization
routines, call helper routines to collect any necessary data, and include the template
which will display the module output.

mod_{ModuleName}.xml
The XML configuration file contains general information about the module (as will be
displayed in the Module Manager in the Joomla! administration interface), as well as
module parameters which may be supplied to fine tune the appearance / functionality of
the module.

While there is no restriction on the name itself, all modules must be prefixed with "mod_".

Examples

A simple "Hello, World" module:

Download: Hello World module (.zip)

A module demonstrating database access and language file:

Download: List Names module (.zip)

 121 / 225

/app/site/documentation/1-0-0/examples/mod_helloworld.zip
/app/site/documentation/1-0-0/examples/mod_listnames.zip

WEB DEVELOPERS

Installation

Installing

See Installing Extensions for details.

Uninstalling

See Uninstalling Extensions for details.

 122 / 225

/documentation/1.2.0/webdevs/extensions.installing
/documentation/1.2.0/webdevs/extensions.uninstalling

WEB DEVELOPERS

Manifests

Overview

All modules should include a manifest in the form of an XML document named the same as the
module. The file holds key "metadata" about the module.

Note: All modules must be prefixed with mod_.

Directory Structure & Files

Manifests are stored in the same directory as the module file itself and must be named the
same (the file extension being the obvious difference).

/hubzero
 /modules
 /{ModuleName}
 /tmpl
 default.php
 helper.php
 mod_{ModuleName}.php
 mod_{ModuleName}.xml

Structure

This XML file just lines out basic information about the template such as the owner, version, etc.
for identification by the Joomla! installer and then provides optional parameters which may be
set in the Module Manager and accessed from within the module's logic to fine tune its
behavior. Additionally, this file tells the installer which files should be copied and installed.

A typical module manifest:

<?xml version="1.0" encoding="utf-8"?>
<install type="module" version="1.5.0">
 <!-- Name of the Module -->
 <name>Hello World - Hello</name>

 <!-- Name of the Author -->
 <author>Ambitionality Software LLC</author>

 <!-- Version Date of the Module -->
 <creationDate>2008-06-23</creationDate>

 123 / 225

WEB DEVELOPERS

 <!-- Copyright information -->
 <copyright>All rights reserved by Ambitionality Software LLC 2008.</c
opyright>

 <!-- License Information -->
 <license>GPL 2.0</license>

 <!-- Author's email address -->
 <authorEmail>info@ambitionality.com</authorEmail>

 <!-- Author's website -->
 <authorUrl>www.ambitionality.com</authorUrl>

 <!-- Module version number -->
 <version>1.0.0</version>

 <!-- Description of what the module does -->
 <description>Outputs a random list of user names</description>

 <!-- Listing of all files that should be installed for the module to
function -->
 <files>
 <!-- The "module" attribute signifies that this is the main controll
er file -->
 <filename module="mod_listnames">mod_listnames.php</filename>
 <filename>index.html</filename>
 <filename>tmpl/default.php</filename>
 <filename>tmpl/index.html</filename>
 </files>

 <languages>
 <!-- Any language files included with the module -->
 <language tag="en-GB">en-GB.mod_listnames.ini</language>
 </languages>

 <!-- Optional parameters -->
 <params>
 <!-- parameter to allow placement of a module class suffix for the m
odule table / xhtml display -->
 <param name="moduleclass_sfx" type="text" default="" label="Module C
lass Suffix" description="PARAMMODULECLASSSUFFIX" />

 <!-- just gives us a little room between the previous paramter and t
he next -->
 <param name="@spacer" type="spacer" default="" label="" description=

 124 / 225

WEB DEVELOPERS

"" />

 <!-- A parameter that allows an administrator to modify the number o
f users that this module will display -->
 <param name="usercount" type="text" default="5" label="LABEL USER CO
UNT" description="DESC USER COUNT" />
 </params>
</install>

Note: Notice that we DO NOT include a reference in the files section for the XML file.

Let's go through some of the most important tags:

INSTALL
The install tag has several key attributes. The type must be "module".

NAME
You can name the module in any way you wish.

FILES
The files tag includes all of the files that will will be installed with the module.

PARAMS
Any number of parameters can be specified for a module.

See Joomla!'s Documentation on the full list of available parameter types and what they do.

 125 / 225

http://docs.joomla.org/Tutorial:Template_parameters

WEB DEVELOPERS

Controllers

Overview

Unlike components, which potentially can have multiple controllers, modules do not have a
controller class. As such, the module directory structure doesn't include a /controllers
subdirectory or controller.php. Instead, the setting of parameters, inclusion of any necessary
files, and the instantiation of the module's view are done within the mod_{ModuleName}.php
file.

Directory Structure & Files

The controller is stored in the same directory as the module file itself and must be named the
same (the file extension being the obvious difference).

/hubzero
 /modules
 /{ModuleName}
 /tmpl
 default.php
 helper.php
 mod_{ModuleName}.php
 mod_{ModuleName}.xml

Implementation

Most modules will perform three tasks in the following order:

Include the helper.php file which contains the class to be used to collect any necessary
data
Invoke the appropriate helper class method to retrieve any data that needs to be
available to the view
Include the template to display the output

Here are the contents of mod_listnames.php:

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

// Include the helper file
require_once(dirname(__FILE__).DS.'helper.php');

 126 / 225

WEB DEVELOPERS

// Get a parameter from the module's configuration
$userCount = $params->get('usercount');

// Get the items to display from the helper
$items = modListNamesHelper::getItems($userCount);

// Include the template for display
require(JModuleHelper::getLayoutPath('mod_listnames'));

 127 / 225

WEB DEVELOPERS

Helpers

Overview

The helper.php file contains that helper class that is used to retrieve the data to be displayed in
the module output. Most modules will have at least one helper but it is possible to have a
module with more or none.

Directory Structure & Files

The directory structure used for MVC oriented modules includes the helper.php file in the top
directory for that module. While there is no rule stating that we must name our helper class as
we have, but it is helpful to do this so that it is easily identifiable and locateable.

/hubzero
 /modules
 /mod_{ModuleName}
 helper.php

Implementation

In our mod_helloworld example, the helper class will have one method: getItems(). This method
will return the items we retrieved from the database.

Here is the code for the mod_helloworld helper.php file:

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

class modHelloWorldHelper
{
 /**
 * Retrieves the hello message
 *
 * @param array $params An object containing the module parameters
 * @access public
 */
 public function getItems($userCount)
 {
 return 'Hello, World!';
 }

 128 / 225

WEB DEVELOPERS

}

More advanced modules might include multiple database requests or other functionality in the
helper class method.

 129 / 225

WEB DEVELOPERS

Languages

Setup

Language files are setup as key/value pairs. A key is used within the module's code and the
translator retrieves the associated string for the given language. The following code is an extract
from a typical module language file.

; Module - List Names (en-US)
MOD_LISTNAMES_LABEL_USER_COUNT = "User Count"
MOD_LISTNAMES_DESC_USER_COUNT = "The number of users to display"
MOD_LISTNAMES_RANDOM_USERS = "Random Users for Hello World"
MOD_LISTNAMES_USER_LABEL = "%s is a randomly selected user"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of MOD_{ModuleName}_{Text} for naming. Adhering to this
naming convention is not required but is strongly recommended as it can help avoid potential
translation collisions.

See the Languages overview for details.

Translating Text

Below is an example of accessing the translate helper:

<p><?php echo JText::_("MOD_EXAMPLE_MY_LINE"); ?></p>

JText::_ is used for simple strings.
JText::sprintf is used for strings that require dynamic data passed to them for variable
replacement.

Strings or keys not found in the current translation file will output as is.

See the Languages overview for details.

 130 / 225

/documentation/1.2.0/webdevs/extensions/languages
/documentation/1.2.0/webdevs/extensions/languages

WEB DEVELOPERS

Layouts

Overview

While technically not necessary for a module to function, it is considered best practices to have
a more MVC structure to your module and put all HTML and display code into view files. This
allows for separation of the logic from presentation. There is a second advantage to this,
however, which is that it will allow the presentation to be overridden easily by any Joomla! 1.5
template for optimal integration into any site.

Overriding module and component presentation in templates is further explained in the
Templates: Overrides section.

Directory Structure & Files

The directory structure used for MVC oriented modules includes a tmpl directory for storing view
files. While more views may be possible, modules should include at least one view names
default.php.

/hubzero
 /modules
 /mod_{ModuleName}
 /tmpl
 default.php

Implementation

A simple view (default.php) for a module named mod_listnames:

<?php defined('_JEXEC') or die('Restricted access'); // no direct acce
ss ?>
<?php echo JText::_('MOD_LISTNAMES_RANDOM_USERS'); ?>

 <?php foreach ($items as $item) { ?>

 <?php echo JText::sprintf('MOD_LISTNAMES_USER_LABEL', $item->name);
?>

 <?php } ?>

 131 / 225

/documentation/1.2.0/webdevs/templates.overrides

WEB DEVELOPERS

Here we simply create an unordered HTML list and then iterate through the items returned by
our helper (in mod_listnames.php), printing out a message with each user's name.

An important point to note is that the template file has the same scope as the
mod_listnames.php file. What this means is that the variable $items can be defined in the
mod_listnames.php file and then used in the default.php file without any extra declarations or
function calls.

Now that we have a view to display our data, we need to tell the module to load it. This is done
in the module's controller file and typically occurs last.

<?php
// No direct access
defined('_JEXEC') or die('Restricted access');

// Include the helper file
require_once(dirname(__FILE__).DS.'helper.php');

// Get a parameter from the module's configuration
$userCount = $params->get('usercount');

// Get the items to display from the helper
$items = modListNamesHelper::getItems($userCount);

// Include the template for display
require(JModuleHelper::getLayoutPath('mod_listnames'));

Here we can see that the name of the module must be passed to the getLayoutPath method of
JModuleHelper. This will load default.php and stores the output in an output buffer which is then
rendered onto the page output.

 132 / 225

WEB DEVELOPERS

Packaging

Overview

Packaging a module for distribution is easy. Just "zip" up the module directory into a
compressed archive file. When the ZIP file is installed, the language file is copied to
/language/{LanguageName}/{LanguageName}.{ModuleName}.ini and is loaded each time the
module is loaded. All of the other files are copied to the /modules/{ModuleName} subfolder of
the Joomla! installation.

 133 / 225

WEB DEVELOPERS

Loading

Loading in Templates

Modules may be loaded in a template by including a Joomla! specific jdoc:include tag. This tag
includes two attributes: type, which must be specified as module in this case and name, which
specifies the position that you wish to load. Any modules assigned to the specified position (set
via the administrative Module Manager) declared in the name attribute will have their output
placed in the template (the jdoc:include is removed by Joomla! afterwards).

<jdoc:include type="modules" name="footer" />

Advanced Template Loading

The countModules method can be used within a template to determine the number of modules
enabled in a given module position. This is commonly used to include HTML around modules in
a certain position only if at least one module is enabled for that position. This prevents empty
regions from being defined in the template output and is a technique sometimes referred to as
"collapsing columns".

For example, the following code includes modules in the 'user1' position only if at least one
module is enabled for that position.

<?php if ($this->countModules('user1')) : ?>
 <div class="user1">
 <jdoc:include type="modules" name="user1" />
 </div>
<?php endif; ?>

The countModules method can be used to determine the number of Modules in more than one
Module position. More advanced calculations can also be performed.

The argument to the countModules function is normally just the name of a single Module
position. The function will return the number of Modules currently enabled for that Module
position. But you can also do simple logical and arithmetic operations on two or more Module
positions.

$this->countModules('user1 + user2');

 134 / 225

WEB DEVELOPERS

Although the usual arithmetic operators, +. -. *, / will work as expected, these are not as useful
as the logical operators 'and' and 'or'. For example, to determine if the 'user1' position and the
'user2' position both have at least one Module enabled, you can use the function call:

$this->countModules('user1 and user2');

Careful: A common mistake is to try something like this:

$this->countModules('user1' and 'user2');

This will return false regardless of the number of Modules enabled in either position, so check
what you are passing to countModules carefully.

You must have exactly one space character separating each item in the string. For example,
'user1+user2' will not produce the desired result as there must be a space character either side
of the '+' sign. Also, 'user1 &nbp;+ user2' will produce an error message as there is more than
one space separating each element.

Example using the or operator: The user1 and user2 Module positions are to be displayed in the
region, but you want the region to not appear at all if no Modules are enabled in either position.

<?php if ($this->countModules('user1 or user2')) : ?>
 <div class="rightcolumn">
 <jdoc:include type="modules" name="user1" />
 <jdoc:include type="modules" name="user2" />
 </div>
<?php endif; ?>

Advanced example: The user1 and user2 Module positions are to be displayed side-by-side with
a separator between them. However, if only one of the Module positions has any Modules
enabled then the separator is not needed. Furthermore, if neither user1 or user2 has any
Modules enabled then nothing is output.

<?php if ($this->countModules('user1 or user2')) : ?>
 <div class="user1user2">

 <?php if ($this->countModules('user1')) : ?>

 135 / 225

WEB DEVELOPERS

 <jdoc:include type="modules" name="user1" style="xhtml" />
 <?php endif; ?>

 <?php if ($this->countModules('user1 and user2')) : ?>
 <div class="greyline"></div>
 <?php endif; ?>

 <?php if ($this->countModules('user2')) : ?>
 <jdoc:include type="modules" name="user2" style="xhtml" />
 <?php endif; ?>

 </div>
<?php endif; ?>

Notice how the first countModules call determines if there any Modules to display at all. The
second determines if there are any in the 'user1' position and if there are it displays them. The
third call determines if both 'user1' and 'user2' positions have any Modules enabled and if they
do then if provides a separator between them. Finally, the fourth call determines if there are any
enabled Modules in the 'user2' position and displays them if there are any.

Loading in Components

Sometimes it is necessary to render a module within a component. This can be done with the
XModuleHelper class provided by HUBzero. To import the class, you must first use the
ximport('name of file or class') method.

XModuleHelper::renderModules($position)

Used for loading potentially multiple modules assigned to a position. This will capture the
rendered output of all modules assigned to the $position parameter passed to it and
return the compiled output.

ximport('xmodule');
$output = XModuleHelper::renderModules('footer');

XModuleHelper::renderModule($name)

Used for loading a single module of a specific name. This will capture the rendered
output of the module with the $name parameter passed to it and return the compiled

 136 / 225

WEB DEVELOPERS

output.

ximport('xmodule');
$output = XModuleHelper::renderModule('mod_footer');

XModuleHelper::displayModules($position)

Used for loading a single module of a specific name. This will echo rendered output of
the module with the $name parameter passed to it.

ximport('xmodule');
XModuleHelper::displayModules('footer');

XModuleHelper::renderModule($name)

Used for loading a single module of a specific name. This will output the module with the
$name parameter passed to it.

ximport('xmodule');
XModuleHelper::displayModule('mod_footer');

Loading in Articles

Modules may be loaded in an article by including a specific {xhub:module} tag. This tag includes
one required attribute: position, which specifies the position that you wish to load. Any modules
assigned to the specified position (set via the administrative Module Manager) declared in the
position attribute will have their output placed in the article in the location of the {xhub:module}
tag.

{xhub:module position="footer"}

Note: To use this feature, the xHUB Tags plugin for content must be installed and active.

 137 / 225

WEB DEVELOPERS

Plugins

Overview

Joomla! plugins serve a variety of purposes. As modules enhance the presentation of the final
output of the Web site, plugins enhance the data and can also provide additional, installable
functionality. Joomla! plugins enable you to execute code in response to certain events, either
Joomla! core events or custom events that are triggered from your own code. This is a powerful
way of extending the basic Joomla! functionality.

See Joomla Events for a list of core Joomla plugin events.

See Component Events for a list of Hubzero plugin events.

Core Types

Plug-ins are managed at a group level that is defined in the plug-in's XML manifest file. While
the number of possible types of plugins is almost limitless, there are a number of core plugin
types that are used by Joomla!. These core types are grouped into directories under /plugins.
They are:

authentication
content
editors
editors-xtd
search
system
user
xmlrpc

Authentication
plugins allow you to authenticate (to allow you to login) against different sources. By
default you will authenticate against the Joomla! user database when you try to login.
However, there are other methods available such as by OpenID, by a Google account,
LDAP, and many others. Wherever a source has a public API, you can write an
authentication plugin to verify the login credentials against this source. For example, you
could write a plugin to authenticate against Twitter accounts because they have a public
API.

Content
plugins modify and add features to displayed content. For example, content plugins can
cloak email address or can convert URL's into SEF format. Content plugins can also
look for markers in content and replace them with other text or HTML. For example, the
Load Module plugin will take {*loadmodule banner1*} (you would remove the *'s in
practice. They are included to actually prevent the plugin from working in this article),

 138 / 225

/documentation/1.2.0/webdevs/plugins.controllers#joomlaevents
/documentation/1.2.0/webdevs/plugins.controllers#componentevents

WEB DEVELOPERS

load all the modules in the banner1 position and replace the marker with that output.
Editor

plugins allow you to add new content editors (usually WYSIYWG).

Editor-XTD
(extended) plugins allow you to add additional buttons to the editors. For
example, the Image, Pagebreak and Read more buttons below the default editor
are actually plugins.

Search
plugins allow you to search different content from different components. For
example, search plugins for Articles, Contacts and Weblinks are already
provided in Joomla!.

System
plugins allow you to perform actions at various points in the execution of the
PHP code that runs a Joomla! Web site.

User
plugins allow you to perform actions at different times with respect to
users. Such times include logging in and out and also saving a user.
User plugins are typically user to "bridge" between web applications
(such as creating a Joomla! to phpBB bridge).

XML-RPC
plugins allow you to provide additional XML-RPC web services for your
site. When your Web site exposes web services, it gives you the ability to
interact remotely, possibly from a desktop application. Web services are
a fairly advanced topic and will not be covered in much detail here.

Directory & File Structure

While a plugin can have any number of files, there are two you need as a
minimum and there are specific naming conventions you must follow. Before we
look at the files, we must decide what sort of plugin we are going to create. It
must either fall under one of the built-in types (authentication, content, editors,
editors-xtd, search, system, user or xmlrpc) or your can create your own type by
adding a new folder under /plugins. So, files for an authentication plugin will be
saved under /plugins/authentication, files for a system plugin will be saved under
/plugins/system, and so on.

The typical plugin install location and files:

/hubzero
 /plugins
 /{PluginType}
 {PluginName}.php
 (includes /{PluginName}/{PluginName}.php)

 139 / 225

WEB DEVELOPERS

 {PluginName}.xml
 /{PluginName}.php (Joomla 1.7+ compatibility)
 {PluginName}.php (Joomla 1.7+ compatibility)
 {PluginName}.xml (Joomla 1.7+ compatibility)

As mentioned, a plugin has a minimum of two files: a PHP file, test.php, which is
the file actually loaded by Joomla! and an XML file, text.xml, which contains
meta and installation information for the plugin as well as the definition of the
plugin parameters.

There is no restriction on the file name for the plugin (although we recommend
sticking with alpha-numeric characters and underscores only), but once you
decide on the file name, it will set the naming convention for other parts of the
plugin.

Examples

A plugin demonstrating basic setup:

Download: System Test plugin (.zip)

 140 / 225

/app/site/documentation/1-1-0/examples/plg_system_test.zip

WEB DEVELOPERS

Installation

Installing

See Installing Extensions for details.

Uninstalling

See Uninstalling Extensions for details.

 141 / 225

/documentation/1.2.0/webdevs/extensions.installing
/documentation/1.2.0/webdevs/extensions.uninstalling

WEB DEVELOPERS

Manifests

Overview

All plugins should include a manifest in the form of an XML document named the same as the
plugin. So, a plugin named test.php would have an accompanying test.xml manifest.

Directory & Files

Manifests are stored in the same directory as the plugin file itself and must be named the same
(file extension being the obvious exception).

/hubzero
 /plugins
 /{PluginType}
 {PluginName}.php (includes /{PluginName}/{PluginName}.php)
 {PluginName}.xml
 /{PluginName}.php (Joomla 1.7+ compatibility)
 {PluginName}.php (Joomla 1.7+ compatibility)
 {PluginName}.xml (Joomla 1.7+ compatibility)

Structure

A typical Joomla 1.7+ plugin manifest:

<?xml version="1.0" encoding="utf-8"?>
<extension version="1.7" type="plugin" group="system">
 <name>System - Test</name>
 <author>Author</author>
 <creationDate>Month 2008</creationDate>
 <copyright>Copyright (C) 2008 Holder. All rights reserved.</copyright
>
 <license>GNU General Public License</license>
 <authorEmail>email</authorEmail>
 <authorUrl>url</authorUrl>
 <version>1.0.1</version>
 <description>A test system plugin</description>
 <files>
 <filename plugin="example">example.php</filename>
 </files>
 <config>
 <fieldset>

 142 / 225

WEB DEVELOPERS

 <field name="example"
 type="text"
 default=""
 label="Example"
 description="An example text parameter" />
 </fieldset>
 </config>
</install>

A typical Joomla 1.5 plugin manifest:

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5.2" type="plugin" group="system" method="upgrade"
>
 <name>System - Test</name>
 <author>Author</author>
 <creationDate>Month 2008</creationDate>
 <copyright>Copyright (C) 2008 Holder. All rights reserved.</copyright
>
 <license>GNU General Public License</license>
 <authorEmail>email</authorEmail>
 <authorUrl>url</authorUrl>
 <version>1.0.1</version>
 <description>A test system plugin</description>
 <files>
 <filename plugin="example">example.php</filename>
 </files>
 <params>
 <param name="example"
 type="text"
 default=""
 label="Example"
 description="An example text parameter" />
 </params>
</install>

Let's go through some of the most important tags:

INSTALL/EXTENSION
This tag has several key attributes. The type must be "plugin" and you must specify the

 143 / 225

WEB DEVELOPERS

group. The group attribute is required and is the name of the directory you saved your
files in (for example, system, content, etc). We use the method="upgrade" attribute to
allow us to install the extension without uninstalling. In other words, if you are sharing
this plugin with other, they can just install the new version over the top of the old one.

NAME
We usually start the name with the type of plugin this is. Our example is a system plugin
and it has some some nebulous test purpose. So we have named the plugin "System -
Test". You can name the plugins in any way, but this is a common format.

FILES
The files tag includes all of the files that will will be installed with the plugin. Plugins can
also support be installed with subdirectories. To specify these just all a FOLDER tag,
<folder>test</folder>. It is common practice to have only one subdirectory and name it
the same as the plugin PHP file (without the extension of course).

PARAMS/CONFIG
Any number of parameters can be specified for a plugin. Please note there is no
"advanced" group for plugins as there is in modules and components.

See Joomla!'s Documentation on the full list of available parameter types and what they do.

 144 / 225

http://docs.joomla.org/Tutorial:Template_parameters

WEB DEVELOPERS

Controllers

Overview

All plugins will have a primary class extending JPlugin that contains the logic and events to be
triggered.

Directory & Files

Plugin files are stored in a sub-directory of the /plugins directory. The sub-directory represents
what type the plugin belongs to. This allows for plugins of the same name but for different types.
For example, one could have a plugin named example for both the /system and /search types.

Note: plugins will always be within a type sub-directory and will never be found in the top-level
/plugins directory.

/hubzero
 /plugins
 /{PluginType}
 {PluginName}.php
 {PluginName}.xml

There is no restriction on the file name for the plugin (although it is recommended to stick with
alpha-numeric characters and underscores only), but once you decide on the file name, it will
set the naming convention for other parts of the plugin.

Structure

Here we have a typical plugin class:

<?php
// no direct access
defined('_JEXEC') or die('Restricted access');

jimport('joomla.plugin.plugin');

/**
 * Example system plugin
 */
class plgSystemTest extends JPlugin

 145 / 225

WEB DEVELOPERS

{
 /**
 * Constructor
 *
 * For php4 compatibility we must not use the __constructor as a cons
tructor for plugins
 * because func_get_args (void) returns a copy of all passed argume
nts NOT references.
 * This causes problems with cross-
referencing necessary for the observer design pattern.
 *
 * @access protected
 * @param object $subject The object to observe
 * @param array $config An array that holds the plugin configurat
ion
 * @since 1.0
 */
 public function __construct(&$subject, $config)
 {
 parent::__construct($subject, $config);

 // Do some extra initialization in this constructor if required
 }

 /**
 * Do something onAfterInitialise
 */
 public function onAfterInitialise()
 {
 // Perform some action
 }
}

Let's look at this file in detail. Please note that the usual Docblock (the comment block you
normally see at the top of most PHP files) has been omitted for clarity.

The file starts with the normal check for defined('_JEXEC') which ensures that the file will fail to
execute if access directly via the URL. This is a very important security feature and the line must
be placed before any other executable PHP in the file (it's fine to go after all the initial comment
though). The importance of having this check your PHP files cannot be over-emphasised.

Next we use the jimport function to load the library file with the definition of the JPlugin class.

 146 / 225

WEB DEVELOPERS

You will notice that a plugin is simply a class derived from JPlugin (this differs from previous
versions of Joomla!). The naming convention of this class is very important. The formula for this
name is:

plg + Proper case name of the plugin directory + Proper case name of the plugin file without the
extension.

Proper case simply means that we capitalise the first letter of the name. When we join them
altogether it's then referred to as "Camel Case". The case is not that important as PHP classes
are not case-sensitive but it's the convention Joomla! uses and generally makes the code a little
more readable.

For our test system plugin, the formula gives us a class name of:

plg + System + Test = plgSystemTest

Let's move on to the methods in the class.

The first method, which is called the constructor, is completely optional. You only require this is
you want to do some work when the plugin is actually loaded by Joomla!. This happens with a
call to the helper method JPluginHelper::importPlugin(<plugin_type>). This means that you
even if the plugin is never triggered, for whatever reason, you still have an opportunity to
execute code if you need to in the constructor.

In PHP 4 the name of the constructor method is the same as the name of the class. If you were
designing only for PHP 5 you could replace this with the name of __constructor instead.

The remaining methods will take on the name of "events" that are trigger throughout the
execution of the Joomla! code. In the example, we know there is an event called
onAfterInitialise which is the first event called after the Joomla! application sets itself up for
work. For more information on when some events are triggered, see the API Execution Order
page on the Documentation Wiki.

The naming rule here is simple: the name of the method must be the same as the event on
which you want it triggered. The Joomla! Framework will auto-register all the methods in the
class for you.

That's the basics of the plugin PHP file. It's location, name and methods will depend on what
you want to use the plugin for.

Joomla Events

One thing to note about system plugins is that they are not limited to handling just system
events. Because the system plugins are always loaded on each run of the Joomla! PHP, you
can include any triggered event in a system plugin.

 147 / 225

http://docs.joomla.org/API_Execution_Order
http://docs.joomla.org/Category:Development

WEB DEVELOPERS

The events triggered in Joomla! are:

Authentication

onAuthenticate

Content

onPrepareContent
onAfterDisplayTitle
onBeforeDisplayContent
onBeforeContentSave (new in 1.5.4)
onAfterContentSave (new in 1.5.4)

Editors

onInit
onGetContent
onSetContent
onSave
onDisplay
onGetInsertMethod

Editors XTD (Extended)

onDisplay

Search

onSearch
onSearchAreas

System

onAfterInitialise
onAfterRoute
onAfterDispatch
onAfterRender

User

onLoginUser
onLoginFailure
onLogoutUser
onLogoutFailure
onBeforeStoreUser

 148 / 225

WEB DEVELOPERS

onAfterStoreUser
onBeforeDeleteUser
onAfterDeleteUser

XML-RPC

onGetWebServices

For more detailed information on how to create specific plugins, visit the Plugins Category on
the Joomla! Documentation Wiki.

Component Events

The following are events that are triggered from within their respective components:

Groups

onGroupAreas
onGroup
onGroupNew
onGroupDeleteCount
onGroupDelete

Members

onMembersAreas
onMember

Tools

onBeforeSessionInvoke
onAfterSessionInvoke
onBeforeSessionStart
onAfterSessionStart
onBeforeSessionStop
onAfterSessionStop

Resources

onResourcesAreas
onResources

Support

onPreTicketSubmission

 149 / 225

http://docs.joomla.org/Category:Plugins

WEB DEVELOPERS

onTicketSubmission
getReportedItem
deleteReportedItem

Tags

onTagAreas
onTagView

Usage

onUsageAreas
onUsageDisplay

What's New

onWhatsnewAreas
onWhatsnew

XMessage

onTakeAction
onSendMessage
onMessageMethods
onMessage

XSearch

onXSearchAreas
onXSearch

 150 / 225

WEB DEVELOPERS

Languages

Overview

Language translation files are placed inside the appropriate language languages directory within
a widget.

/hubzero
 /language
 /{LanguageName}
 {LanguageName}.plg_{GroupName}_{PluginName}.ini

Note: Plugin language files contain data for both the front-end and administrative back-end.

Setup

As previously mentioned, language files are setup as key/value pairs. A key is used within the
plugin's code and the translator retrieves the associated string for the given language. The
following code is an extract from a typical plugin language file.

; Plugin - System - Test (en-US)
PLG_SYSTEM_TEST_HERE_IS_LINE_ONE = "Here is line one"
PLG_SYSTEM_TEST_HERE_IS_LINE_TWO = "Here is line two"
PLG_SYSTEM_TEST_MYLINE = "My Line"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of PLG_{PluginGroup}_{PluginName}_{Text} for naming.
Adhering to this naming convention is not required but is strongly recommended as it can help
avoid potential translation collisions.

See the Languages overview for details.

Loading

The appropriate language file for a plugin is not preloaded when the plugin is instantiated as
many plugins may not have language files at all. As such, one must specifically load any file(s) if

 151 / 225

/documentation/1.2.0/webdevs/extensions.languages

WEB DEVELOPERS

they are needed. This can be done in the plugin's constructor but is more commonly found
outside of the class altogether. Here we see the test plugin for the examples plugins group
loading its language file right before declaration of the plugin's class.

<?php
// Check to ensure this file is included in Joomla!
defined('_JEXEC') or die('Restricted access');

jimport('joomla.plugin.plugin');
JPlugin::loadLanguage('plg_system_test');

class plgSystemTest extends JPlugin
{

}

Note that the string passed to the loadLanguage() method matches the pattern for the naming
of the language file itself, minus the language prefix and file extension.

Translating Text

Below is an example of accessing the translate helper:

<p><?php echo JText::_("PLGN_EXAMPLE_MY_LINE"); ?></p>

Strings or keys not found in the current translation file will output as is.

See the Languages overview for details.

 152 / 225

/documentation/1.2.0/webdevs/extensions.languages

WEB DEVELOPERS

Layouts

Overview

Note: Plugin views are an additional feature brought through HUBzero libraries. A standard, non-
HUBzero Joomla! install will not have this capability.

The majority of plugins will not have view files. Occasionally, however, a plugin will return HTML
and it is considered best practices to have a more MVC structure to your plugin and put all
HTML and display code into view files. This allows for separation of the logic from presentation.
There is a second advantage to this, however, which is that it will allow the presentation to be
overridden easily by any Joomla! 1.5 template for optimal integration into any site.

Overriding plugin, module, and component presentation in templates is further explained in the
Templates: Overrides section.

Directory Structure & Files

Plugins, like components and modules, are set up in a particular directory structure.

/plugins
 /groups
 forum.php (the main plugin file)
 forum.xml (the installation XML file)
 /forum
 /views
 /browse
 /tmpl
 default.php (the layout)
 default.xml (the layout installation XML file)

Similar to components, under the views directory of the plugin's self-titled directory (in the
example, forum) there are directories for each view name. Within each view directory is a /tmpl/
directory. There is usually only one layout file but depending on who wrote the plugin, and how
it is written, there could be more.

Implementation

Loading a plugin view

 153 / 225

/documentation/1.2.0/webdevs/templates.overrides

WEB DEVELOPERS

class plgExamplesTest extends JPlugin
{
 ...

 public function onReturnHtml()
 {
 // Include the HUBzero library that allows plugin views to wor
k
 ximport('Hubzero_Plugin_View');

 // Instantiate a new view
 $view = new Hubzero_Plugin_View(
 array(
 'folder'=>'examples',
 'element'=>'test',
 'name'=>'display'
)
);

 // Set any data the view may need
 $view->hello = 'Hello, World';

 // Set any errors
 if ($this->getError()) {
 $view->setError($this->getError());
 }

 // Return the view
 return $view->loadTemplate();
 }
}

In the example, we're instantiating a new plugin view and passing it an array of variables that
tell the object where to load the view HTML from. folder is the plugin group, element is the
plugin, and name is the name of the view that is to be loaded. So, in this case, it would
correspond to a view found here:

/plugins
 /examples
 /test
 /views
 /display
 /tmpl

 154 / 225

WEB DEVELOPERS

 default.php (the layout)
 default.xml (the layout installation XML file)

Also note that we're returning $view->loadTemplate() rather than calling $view->display(). The
loadTemplate() method captures the HTML output of the view rather than printing it out to the
screen. This allows us to store the output in a variable and pass it around for later display.

The plugin view file

Our view (default.php) is constructed the same as any module or component view file:

<?php defined('_JEXEC') or die('Restricted access'); // no direct acce
ss ?>
<p>
 <?php echo $this->hello; ?>
</p>

 155 / 225

WEB DEVELOPERS

Packaging

Overview

Packaging a plugin for distribution is easy. If you only have the two files (the PHP file and the
XML file), just "zip" them up into a compressed archive file. If your plugin uses a subdirectory,
then simply include that in the archive as well.

 156 / 225

WEB DEVELOPERS

Loading

Triggering Events

Using the plugin system in your add-on is fairly simple. The most important part is good
planning because, to some degree, you're defining an interface for other people to use.

The first thing you need to do is to load your plug-in group. This is done via the following code:

JPluginHelper::importPlugin('myplugingroup');

This will load all enabled plug-ins that have defined themselves as part of your group. The next
thing you need to do is get an instance of the JDispatcher class like so:

$dispatcher =& JDispatcher::getInstance();

Notice two things here. First, we are using the getInstance() method, not "new" to create a new
instance. That is because we need to get the global singleton instance of the JDispatcher object
which contains a list of all the plug-ins available. Second, we are using the =& construct to make
sure we have a reference to the instance of the JDispatcher and not a copy. Of course this
really only applies to PHP version 4, but since you are a good cross-version developer, you will
allow for PHP 4 users.

Next, we need to trigger our custom event:

$results = $dispatcher->trigger('onCdAddedToLibrary', array(&$artist
, &$title));

Here we have triggered the event 'onCdAddedToLibrary' and passed in the artist name and title
of the track. All plug-ins will receive these parameters, process them and optionally pass back
information. You can then handle that information however you like.

In summary, here's the complete example code:

JPluginHelper::importPlugin('myplugingroup');
$dispatcher =& JDispatcher::getInstance();

 157 / 225

WEB DEVELOPERS

$results = $dispatcher->trigger('onCdAddedToLibrary', array(&$artist
, &$title));

Note: One thing to notice about the trigger method is that there is nothing defining which group
of plug-ins should be notified. In actuality, all plug-ins that have been loaded are notified
regardless of the group they are in. So, it's important to make sure you have an event name that
does not conflict with any other plug-in group's event name. Most of the time this is not an issue
because your component is the one that is loading the plug-in group, so you know which ones
are loaded, however be aware that the "system" plugin group is loaded very close to the
beginning of the request, so you have to make sure you don't have any event naming conflicts
with the system events.

 158 / 225

WEB DEVELOPERS

Templates

Overview

A template is a series of files within the Joomla! CMS that control the presentation of the
content. The template is not a website; it's also not considered a complete website design. The
template is the basic foundation design for viewing your website. To produce the effect of a
"complete" website, the template works hand-in-hand with the content stored in the database.

This article guides you through the process of designing your own template for a HUB. This is
intended for web designers/developers with a solid knowledge of CSS and HTML and some
basic sense of aesthetics.

Although many currently available HUBs tend to look somewhat similar, you have the freedom
to make your HUB look as unique as you want it to be simply by modifying a few CSS and
HTML files within your template folder.

Note: All the following articles will refer to construction of a front-end template. However, the
concepts, techniques, and methods used also apply to the creation of administrative (back-end)
templates unless otherwise noted.

Examples

We have provided an example template that you may use to follow along with the articles or use
as a starter for your own HUB template.

Download Basic Template (zip)

 159 / 225

/app/site/documentation/1-2-0/examples/tpl_neutral.zip

WEB DEVELOPERS

Installation

Installing

See Installing Extensions for details.

Uninstalling

See Uninstalling Extensions for details.

 160 / 225

/documentation/1.2.0/webdevs/extensions.installing
/documentation/1.2.0/webdevs/extensions.uninstalling

WEB DEVELOPERS

Designing

Overview

Although many currently available HUBs tend to look somewhat similar, you have the freedom
to make your HUB look as unique as you want it to be simply by modifying a few CSS and
HTML files within your template folder.

This article makes references to Adobe Photoshop for creation of design files and images but
the developer may use any imaging software they're comfortable with.

Creating A Mock-up

It is recommended to start the design of your HUB template by taking a look at a number of
other HUBs and websites and deciding which features are important and best serve the goals of
your HUB. Having PIs and other team members involved in the process from the start usually
saves much time for defining and polishing the design concept. Once you have a good idea of
the look and feel of your HUB and its main features, you would normally create a sketch of the
HUB front page in Adobe Photoshop or a similar graphics program. Any secondary page will
usually keep the header with the menu and login area, and the footer. For creating the
Photoshop mock-up, you are encouraged to use the hubtemplate.psd file attached in the
"Examples" section of the Templates Overview. Make sure to get feedback from others and
finalize the mock-up before jumping onto the next step.

 161 / 225

http://www.adobe.com/products/photoshop/compare/

WEB DEVELOPERS

 162 / 225

WEB DEVELOPERS

Manifests

Overview

All templates should include a manifest in the form of an XML document named
templateDetails.xml. The file holds key "metadata" about the template and is essential. Without
it, your template won't be seen by Joomla!.

Directory & Files

Manifests are stored in the same directory as the template file itself and must be named
templateDetails.xml.

/hubzero
 /templates
 /{TemplateName}
 /css
 /html
 /images
 /js
 error.php
 index.php
 templateDetails.xml
 template_thumbnail.png
 favicon.ico

Structure

This XML file just lines out basic information about the template such as the owner, version, etc.
for identification by the Joomla! installer and then provides optional parameters which may be
set in the Template Manager and accessed from within the module's logic to fine tune its
behavior. Additionally, this file tells the installer which files should be copied and installed.

A typical template manifest:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install PUBLIC "-//Joomla! 1.5//DTD template 1.0//EN"
 "http://dev.joomla.org/xml/1.5/template-install.dtd">
<install version="1.5" type="template">
 <name>mynewtemplate</name>
 <creationDate>2008-05-01</creationDate>
 <author>John Doe</author>

 163 / 225

WEB DEVELOPERS

 <authorEmail>john@example.com</authorEmail>
 <authorUrl>http://www.example.com</authorUrl>
 <copyright>John Doe 2008</copyright>
 <license>GNU/GPL</license>
 <version>1.0.2</version>
 <description>My New Template</description>
 <files>
 <filename>index.php</filename>
 <filename>component.php</filename>
 <filename>templateDetails.xml</filename>
 <filename>template_thumbnail.png</filename>
 <filename>images/background.png</filename>
 <filename>css/style.css</filename>
 </files>
 <positions>
 <position>breadcrumb</position>
 <position>left</position>
 <position>right</position>
 <position>top</position>
 <position>user1</position>
 <position>user2</position>
 <position>user3</position>
 <position>user4</position>
 <position>footer</position>
 </positions>
</install>

Let's go through some of the most important tags:

INSTALL
The install tag has several key attributes. The type must be "template".

NAME
You can name the templates in any way you wish.

FILES
The files tag includes all of the files that will will be installed with the template.

POSITIONS
The module positions used in the template.

The one noticeable difference between this template manifest and the typical manifest of a
module or component is the lack of params. While templates may have their own params for
further configuration via the administrative back-end, they aren't as commonly found as in other
extension manifests. Most HUBzero templates do not include them.

 164 / 225

WEB DEVELOPERS

See Joomla!'s Documentation on the full list of available parameter types and what they do.

 165 / 225

http://docs.joomla.org/Tutorial:Template_parameters

WEB DEVELOPERS

Page Layout

Overview

A template will typically have two layout files: index.php for the majority of content and error.php
for custom error pages ("404 - Not Found", etc.). Both of these files are contained within the top
level of a template (i.e., they cannot be placed in a sub-directory of the template).

/hubzero
 /templates
 /{TemplateName}
 error.php
 index.php

All the HTML that defines the layout of your template is contained in a file named index.php.
The index.php file becomes the core of every page that is delivered and, because of this, the file
is required. Essentially, you make a page (like any HTML page) but place PHP code where the
content of your site should go.

The error.php layout, unlike index.php is optional. When not included in a template, Joomla! will
use its default system error layout to display site errors such as "404 - Page Not Found".
Including error.php is recommended though as it helps give your site a more cohesive feel and
experience to the user.

A Breakdown of index.php

Note: For the sake of simplicity, we've excluded some more common portions found in
HUBzero templates. The portions removed were purely optional and not necessary for a
template to function correctly. We suggest inspecting other templates that may be installed on
your HUB for further details.

Starting at the top:

<?php
defined('_JEXEC') or die('Restricted access');

ximport('Hubzero_Document');

$config =& JFactory::getConfig();
$juser =& JFactory::getUser();

 166 / 225

WEB DEVELOPERS

//do we want to include jQuery
if (JPluginHelper::isEnabled('system', 'jquery'))
{
 $this->addScript($this->baseurl . '/templates/' . $this->template . '
/js/hub.jquery.js');
}
else
{
 $this->addScript($this->baseurl . '/templates/' . $this->template . '
/js/hub.js');
}

// Get the user's browser and browser version
// We add this to the document root as classes for better targeting wi
th CSS
ximport('Hubzero_Browser');
$browser = new Hubzero_Browser();
$b = $browser->getBrowser();
$v = $browser->getBrowserMajorVersion();

// Set the page title
$this->setTitle($config->getValue('config.sitename') . ' - ' . $this->
getTitle());
?>
<!DOCTYPE html>
<!--[if lt IE 7]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie6"> <![endif]-->
<!--[if IE 7]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie7"> <![endif]-->
<!--[if IE 8]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie8"> <![endif]-->
<!--[if IE 9]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie9"> <![endif]-->
<!--[if (gt IE 9)|!(IE)]><!--> <html dir="<?php echo $this->direction;
 ?>" lang="<?php echo $this->language; ?>" class="<?php echo $b . ' '
 . $b . $v; ?>"> <!--<![endif]-->

The first line prevents unauthorized people from looking at your coding and potentially causing
trouble. Then we grab a reference to the global site configuration. Next, we push some scripts
to the document, first checking if the jquery plugin is enabled. Following that, we get the current
site visitors browser and browser version. We add this to the document root as classes for
better targeting with CSS. The last line of PHP takes the current page title and prepends the

 167 / 225

WEB DEVELOPERS

site's name. Thus, every page results with a title like "myHUB.org - My Page Title".

The first line of actual HTML tells the browser (and webbots) what sort of page it is. The next
line says what language the site is in.

<head>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php
 echo Hubzero_Document::getSystemStylesheet(array(
 'fontcons', 'reset', 'columns', 'notifications', 'pagination',
 'tabs', 'tags', 'comments', 'voting', 'layout'
)); /* reset MUST come before all others except fontcons */ ?>" />
 <!-- Include the template's main CSS file -->
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ech
o $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/main.
css" />
 <link rel="stylesheet" type="text/css" media="print" href="<?php echo
 $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/print.
css" />

 <!-- This includes metadata tags and the <title> tag -->
 <jdoc:include type="head" />

 <!--[if IE 9]>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ec
ho $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/brow
ser/ie9.css" />
 <![endif]-->
 <!--[if IE 8]>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ec
ho $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/brow
ser/ie8.css" />
 <![endif]-->
 <!--[if IE 7]>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ec
ho $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/brow
ser/ie7.css" />
 <![endif]-->
</head>

The first line compiles several bootstrap CSS files into a single, minified (comments and white-
space removed to lessen file size) file to reduce http requests.

The following two lines include the main stylesheet for the template and a print stylesheet that

 168 / 225

WEB DEVELOPERS

applies more suitable styles when printing.

The fifth line gets Joomla! to put the correct header information in. This includes the page title,
meta information, your main.css, system JavaScript, as well as any CSS or JavaScript that was
pushed to the template from an extension (component, module, or plugin). This is a bit different
than Joomla! 1.5's typical behavior in that the HUBzero code is automatically finding and
including main.css and some key JavaScript files from your template. This is done due to the
fact that order of inclusion is important for both CSS and JavaScript. For instance, one cannot
execute JavaScript code built using the MooTools framework before the framework has been
included. It would simply fail. As such, the naming and existence of specific directories, CSS,
and JavaScript files becomes quite important for a HUBzero template.

The rest creates links to a couple CSS fix style sheets for Internet Explorer (more on this in the
Cascading Style Sheets chapter).

Now for the main body:

<body>

 <div id="header">
 <h1><a href="<?php echo $this->baseurl ?>" title="<?php echo $jconfi
g->getValue('config.sitename'); ?>"><?php echo $jconfig->getValue('con
fig.sitename'); ?></h1>

 <ul id="toolbar" class="<?php if (!$juser->get('guest')) { echo 'log
gedin'; } else { echo 'loggedout'; } ?>">
<?php
 // Get the current user object
 $juser =& JFactory::getUser();

 // Is the user logged in?
 if (!$juser->get('guest')) {
 // Yes. Show them a different toolbar.
 echo '<li id="logout">'.JText::_('Logout').'
';
 echo '<li id="myaccount">get('id').'"><s
pan>'.JText::_('My Account').'';
 echo '<li id="usersname">'.$juser->get('name').' ('.$juser->get('use
rname').')';
 } else {
 // No. Show them the login and register options.
 echo "ttt".'<li id="login"><a href="/login" title="'.JText::_('Login
').'">'.JText::_('Login').''."n";
 echo "ttt".'<li id="register"><a href="/register" title="'.JText::_(
'Sign up for a free account').'">'.JText::_('Register').''."n
";

 169 / 225

/documentation/1.2.0/webdevs/templates/css

WEB DEVELOPERS

 }
?>

 <!-- Include any modules for the "search" position -->
 <jdoc:include type="modules" name="search" />
 </div><!-- / #header -->

 <!-- Include any modules assigned to the "user3" position -->
 <div id="nav">
 <h2>Navigation</h2>
 <jdoc:include type="modules" name="user3" />
 </div><!-- / #nav -->

 <div id="wrap">
 <div id="content" class="<?php echo $option; ?>">
 <!-- Include the component output -->
 <jdoc:include type="component" />
 </div><!-- / #content -->

 <div id="footer">
 <!-- Include any modules assigned to the "footer" position -->
 <jdoc:include type="modules" name="footer" />
 </div><!-- / #footer -->
 </div><!-- / #wrap -->
</body>

First we layout the site's masthead in the <div id="header"> block. Inside, we set the <h1> tag to
the site's name, taken from the global site configuration.

Next, we move on to a toolbar that is present in the masthead of every page. This toolbar
contains "login" and "register" links when not logged in and "logout" and "My Account" links
when logged in. While not required, it is highly recommended that all templates include some
form of this arrangement in an easy-to-find, consistent location.

Some modules that have been assigned the position "search" are then loaded in the masthead.
Most HUBzero templates default to having a simple search form module appear. Again, this is
not required and placement of modules is entirely up to the developer(s) but we, once again,
strongly recommend that some form of a search box be included on all pages.

Then we move on to a block where navigation is loaded. It is here that our main menu will
appear.

 170 / 225

WEB DEVELOPERS

Next, we get to the primary content block. One of the first things you may notice is the use of
module as a jdoc:include type. This is how we tell where in our template to output modules that
have been assigned to specific positions.

It is also worth noting the small bit of PHP (<?php echo $option; ?>) in the class attribute of the
content <div>. This small bit of code outputs the name of the current component as a CSS
class. So, if one were on a page of a "groups" component, the resulting HTML would be <div
id="content" class="com_groups">. Since all component output is contained inside the "content"
div, this allows for more specific CSS targeting.

See the Modules: Loading article for more details on module positioning.

The content div contains a very important jdoc:include of type component. This is where all
component output will be injected in the template. It is essential this line be included in a
template for it to be able to display any content.

A Breakdown of error.php

Starting at the top:

<?php
defined('_JEXEC') or die('Restricted access');

// Get the site config
$jconfig =& JFactory::getConfig();
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="<?php echo $this->language; ?>" lang="<?php echo $this->lan
guage; ?>" >

The first line prevents unauthorized people from looking at your coding and potentially causing
trouble. Then we grab a reference to the global site configuration. The first line of actual HTML
tells the browser (and webbots) what sort of page it is. The next line says what language the
site is in.

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title><?php echo $jconfig->getValue('config.sitename'); ?> - <?php e

 171 / 225

/documentation/1.2.0/webdevs/modules.loading

WEB DEVELOPERS

cho $this->title; ?> - <?php echo $this->error->message ?></title>
 <link rel="stylesheet" type="text/css" media="all" href="<?php echo $
this->baseurl ?>/templates/<?php echo $this->template; ?>/css/error.cs
s" />
</head>

Unlike with index.php, we do not include the <jdoc:include type="head" /> tag. Instead, we
simply set a single metadata tag to declare the character set and then set the title tag. Next, we
include the error.css style sheet, which contains styling just for this layout.

Now for the main body:

<body>
 <div id="wrap">
 <div id="header">
 <h1><a href="<?php echo $this->baseurl ?>" title="<?php echo $confi
g->getValue('config.sitename'); ?>"><?php echo $config->getValue('conf
ig.sitename'); ?></h1>
 </div>
 <div id="outline">
 <div id="errorbox" class="code-<?php echo $this->error->code ?>">
 <h2><?php echo $this->error->code ?> - <?php echo $this->error->me
ssage ?></h2>

 <p><?php echo JText::_('You may not be able to visit this page bec
ause of:'); ?></p>

 <?php echo JText::_('An out-of-
date bookmark/favourite'); ?>
 <?php echo JText::_('A search engine that has an out-of-
date listing for this site'); ?>
 <?php echo JText::_('A mis-typed address'); ?>
 <?php echo JText::_('You have no access to this page'); ?></l
i>
 <?php echo JText::_('The requested resource was not found');
?>
 <?php echo JText::_('An error has occurred while processing y
our request.'); ?>

 <p><?php echo JText::_('If difficulties persist, please contact th
e system administrator of this site.'); ?></p>

 172 / 225

WEB DEVELOPERS

 </div><!-- / #errorbox -->

 <form method="get" action="/search">
 <fieldset>
 <?php echo JText::_('Please try the'); ?> <a href="index.php" tit
le="<?php echo JText::_('Go to the home page'); ?>"><?php echo JText::
('Home Page'); ?> <?php echo JText::('or'); ?>
 <label>
 <?php echo JText::_('Search:'); ?>
 <input type="text" name="searchword" value="" />
 </label>
 <input type="submit" value="<?php echo JText::_('Go'); ?>" />
 </fieldset>
 </form>
 </div><!-- / #outline -->
<?php
 if ($this->debug) :
 echo "tt".'<div id="techinfo">'."n";
 echo $this->renderBacktrace()."n";
 echo "tt".'</div>'."n";
 endif;
?>
 </div><!-- / #wrap -->
</body>

As can be seen, this is relatively straight-forward. We set a title for the page, output the error
message, provide some potential reasons for the error and, finally, include a search form. Note
that we did not use any modules.

One portion to pay special attention to is the small bit of PHP at the end of the page. This
outputs a stack trace when site debugging is turned on.

Note: It is never recommended to turn on debugging on a production site.

Loading Modules

Modules may be loaded in a template by including a Joomla! specific jdoc:include tag. This tag
includes two attributes: type, which must be specified as module in this case and name, which
specifies the position that you wish to load. Any modules assigned to the specified position (set
via the administrative Module Manager) declared in the name attribute will have their output

 173 / 225

WEB DEVELOPERS

placed in the template (the jdoc:include is removed by Joomla! afterwards).

<jdoc:include type="modules" name="footer" />

See the Modules: Loading article for further details on how to use more advanced features.

 174 / 225

/documentation/1.0.0/webdevs/modules.loading

WEB DEVELOPERS

Cascading Style Sheets

Overview

CSS stands for Cascading Style Sheet. HTML tags specify the graphical flow of the elements,
be it text, images or flash animations, on a webpage. CSS allows us to define the appearances
of those HTML tags with their content, somewhere, so that other pages, if want be, may adhere
to. This brings along consistency throughout a website. The cascading effect stipulates that the
style of a tag (parent) may be inherited by other tags (children) inside it.

Professional websites separate styling from content. There are many reasons for this, the most
obvious (to a developer) being the ability to control the appearance of many pages by changing
one file. Styling information includes: fonts, backgrounds, images (that recur on every page),
position and dimensions of elements on the page. Your HTML file will now be left with: header
information; a series of elements; the text of your website. Because you are creating a Joomla!
template, you will actually have: some header information, PHP code to request the rest of the
header information, a series of elements, PHP code to request each module position, and PHP
code to request the main content.

Style information is coded in CSS and usually stored in files with the suffix .css. A webpage
contains a link to the associated .css file so a browser can find the appropriate style information
to apply to the page. CSS can also be placed inside a HTML file between <style
type="text/css"></style> tags. This is, however, discouraged as it is mixing style and content
elements which can make future changes more difficult.

Implementation

Definitions for this section:

External CSS files
using <link> in the <head>

Document head CSS
using <style> in the <head>

Inline CSS
using the style attribute on a tag, i.e. <div style="color:red;">

Guidelines

1. External CSS files should be used in preference to document head CSS and document
head CSS should be used in preference to inline CSS.

2. CSS files MUST have the file extension .css and should be stored in the relevant
includes directory in the site structure, usually /style/.

3. The file size of CSS files should be kept as low as possible, especially on high demand

 175 / 225

WEB DEVELOPERS

pages.
4. External CSS must be linked to using the <link> element which must be placed in the

head section of the document. This is the preferred method of using CSS. It offers the
best experience for the user as it helps prevent FOUC (flash of unstyled content),
promotes code reuse across a site and is cacheable.

5. External style sheets should not be imported (i.e. using @import) as it impairs caching.
In IE @import behaves the same as using <link> at the bottom of the page (preventing
progressive rendering), so it's best not to use it. Mixing <link> and @import has a
negative effect on browsers' ability to asynchronously download the files.

6. Document head CSS may be used where a style rule is only required for a specific
page.

7. Inline styles should not be used.
8. Query string data (e.g. "style.css?v=0.1") should not be used on an external CSS file.

Use of query strings on CSS files prevents them from caching in some browsers. Whilst
this may be desirable for testing, and of course may be used for that, it is very
undesirable for production sites.

Directory & Files

Convention places CSS files within a directory named css inside the template directory. While
developers are not restricted to this convention, we do recommend it as it helps keep the layout
and structure of HUBzero templates consistent. A developer from one project will instantly know
where to find certain files and be familiar with the directory structure when working on a project
originally developed by someone else.

There are a handful of common CSS files found among most HUBzero. While none of these are
required, it is encouraged to follow the convention of including them as it promotes consistency
among HUBzero templates and comes with the advantage that certain files, such as main.css
are auto-loaded, thus reducing some work on the developer's part.

Here's the standard directory and files for CSS found in a HUBzero template:

/hubzero
 /templates
 /{TemplateName}
 /css
 error.css
 browser/ie7.css
 browser/ie8.css
 browser/ie9.css
 main.css
 print.css
 component.css

 176 / 225

WEB DEVELOPERS

File details:

error.css
This is the primary stylesheet loaded by error.php.

ie8.css
Style fixes for Internet Explorer 8.

ie7.css
Style fixes for Internet Explorer 7.

ie9.css
Style fixes for Internet Explorer 9.

main.css
This is the primary stylesheet loaded by index.php. The majority of your styles will be in
here.

print.css
Styles used when printing a page.

component.css
This file is meant to be included before any other CSS file. Its purpose is to reduce
browser inconsistencies in things like default line heights, margins and font sizes of
headings, and so on.

Bootstrap

Several bootstrap styles are available in the core, broken into individual stylesheets to make it
easier for you to decide what styles you do and do not want to incorporate into your template.

The bootstrap stylesheets can be found in the /media/system/css directory and can be linked to
or imported like any other stylesheet. However, for sake of site performance, we recommend
using the Hubzero_Document::getSystemStylesheet() method. This method accepts wither a
comma-separated string or array of core stylesheets to include and then compiles them into a
single file with comments and white-space stripped out. The resulting file is saved in the cache
with a timestamp. Should any of the core files change, the resulting compiled stylesheet will
automatically be updated. This has two immediate advantages of 1) fewer http requests
(improves page load time) and 2) ensures browsers re-cache the CSS whenever it has
changed.

Example usage:

<link rel="stylesheet" type="text/css" media="screen" href="<?php echo
 Hubzero_Document::getSystemStylesheet(array(
 'reset',
 'fontcons',
 'columns',
 'notifications',

 177 / 225

WEB DEVELOPERS

 'pagination',
 'tabs',
 'tags',
 'comments',
 'voting',
 'layout'
)); ?>" />

reset.css

This file is meant to be included before any other CSS file. Its purpose is to reduce
browser inconsistencies in things like default line heights, margins and font sizes of
headings, and so on.

The reset styles given here are intentionally very generic. There isn't any default color or
background set for the <body> element, for example. Colors and any other styling
should be addressed in the template's primary stylesheet after loading reset.css.

fontcons.css

This is a custom created icon (dingbat) font used for many of the icons found throughout
a hub.

columns.css

This sets up basic structure for generating layouts that use columns. It supports up to
twelve columns and any combination there in. See usage.

notifications.css

Default styles for warning, error, help, and info messages.

pagination.css

Basic styling for pagination.

tabs.css

Default styles for a menu (list) displayed as tabs.

 178 / 225

/documentation/1.2.0/webdevs/templates.elements

WEB DEVELOPERS

tags.css

Tag styles. Tags are used frequently throughout a hub and this stylesheet helps ensure
the look consistent.

comments.css

Comments appear on many items such as KB articles, Questions and Answers, Support
tickets, Forums, Blog posts, and more. This is a stylesheet for handling basic layout and
styles of a list of (nested) comments and the form for submitting comments.

voting.css

Basic styles for thumbs-up and thumbs-down voting buttons.

layout.css

Default styles for containers, result lists, and other basic structural items used frequently
in a hub.

Typical main.css Structure

main.css controls base styling for your HUB, which is usually further extended by individual
component CSS.

We took every effort to organize the main.css in a manner allowing you to easily find a section
and a class name to modify. E.g. if you want to change the way headers are displayed, look for
"headers" section as indicated by CSS comments. Although you can modify all existing classes,
depending on your objectives, it is recommended to avoid modifications to certain sections, as
indicated below. While you can add new classes as needed, we caution strongly about
removing or renaming any of the existing IDs and classes. Many HUBzero components take
advantage of these code styles and any alterations made risk breaking the template display.

Some sections that you are likely to modify:

Body - may want to change site background or font family.
Links - pick colors for hyperlinks
Headers - pick colors and font size of headings

 179 / 225

WEB DEVELOPERS

Lists - may want to change general list style
Header - you will definitely want to change this
Toolbar - display of username, login/logout links etc.
Navigation - display of main menu
Breadcrumbs - navigation under menu on secondary pages
Extra nav - links that appear on the right-
hand side in multiple components
Footer

Sections where you would want to avoid serious modifications:

Core classes
Site notices, warnings, errors
Primary Content Columns
Flexible Content Columns
Sub menu - display of tabs in multiple components

print.css

This is a style sheet that is used only for printing. It removes unnecessary elements such as
menus and search boxes, adjusts any background and font colors as needed to improve
readability, and can expose link URLs through generated content (advanced browsers only, e.g.
Safari, Firefox).

error.css

This is a style sheet that is used only by the error.php layout. It allows for a more custom styling
to error pages such as "404 - Page Not Found".

Internet Explorer

We strongly encourage developers to test their templates in as many browsers and on as many
operating systems as possible. Most modern browsers will have little differences in rendering,

 180 / 225

WEB DEVELOPERS

however, Internet Explorer deserves special mention here.

The most widely used browser, Internet Explorer, is also one of the most lacking in terms of
CSS support. Internet Explorer has also, traditionally, handled rendering of block elements,
element positioning, and other common tasks a bit differently than many other browsers. As can
be expected, this has led to much controversy and discussion on how best to handle such
differences. We strongly recommend designing for and testing your templates in alternate
browsers such as Safari, Firefox, Chrome, or Opera and then applying fixes to Internet Explorer
afterwards. We recommend the use of conditional comments to apply special Internet Explorer
only stylesheets.

..1a Conditional Comments

Conditional comments only work in Internet Explorer on Windows, and are thus excellently
suited to give special instructions meant only for Internet Explorer on Windows. They are
supported from Internet Explorer 5 onwards, and it is even possible to distinguish between
versions of the browser.

Conditional comments work as follows:

<!--[if IE 6]>
 Special instructions for IE 6 here
<![endif]-->

Their basic structure is the same as an HTML comment (<!-- -->). Therefore all other browsers
will see them as normal comments and will ignore them entirely. Internet Explorer, however,
recognizes the special syntax and parses the content of the conditional comment as if it were
normal page content. As such, they can contain any web content you wish to display only to
Internet Explorer. While we're using this feature to load CSS files, it can also be used to load
JavaScript or display Internet Explorer specific HTML.

Note: Since conditional comments use the HTML comment structure, they can only be included
in HTML, and not in CSS files.

Conditional comments support some variation in syntax. For example, it is possible to target a
specific browser version as demonstrated above or target multiple versions such as "all versions
of Internet Explorer lower than 7". This can be done with a couple handy operators:

gt = greater than
gte = greater than or equal to
lt = less than
lte = less than or equal to

 181 / 225

WEB DEVELOPERS

<!--[if IE]>
 According to the conditional comment this is Internet Explorer
<![endif]-->
<!--[if IE 5]>
 According to the conditional comment this is Internet Explorer 5
<![endif]-->
<!--[if IE 5.0]>
 According to the conditional comment this is Internet Explorer 5.0
<![endif]-->
<!--[if IE 5.5]>
 According to the conditional comment this is Internet Explorer 5.5
<![endif]-->
<!--[if IE 6]>
 According to the conditional comment this is Internet Explorer 6
<![endif]-->
<!--[if IE 7]>
 According to the conditional comment this is Internet Explorer 7
<![endif]-->
<!--[if IE 8]>
 According to the conditional comment this is Internet Explorer 8
<![endif]-->
<!--[if gte IE 5]>
 According to the conditional comment this is Internet Explorer 5 and
up
<![endif]-->
<!--[if lt IE 6]>
 According to the conditional comment this is Internet Explorer lower
than 6
<![endif]-->
<!--[if lte IE 5.5]>
 According to the conditional comment this is Internet Explorer lower
or equal to 5.5
<![endif]-->
<!--[if gt IE 6]>
 According to the conditional comment this is Internet Explorer greate
r than 6
<![endif]-->

So, to load stylesheets to specific versions of Internet Explorer in our template we do something
like the following:

<html>
 <head>

 182 / 225

WEB DEVELOPERS

 ... other CSS files ...
 <!--[if IE 7]>
 <link rel="stylesheet" type="text/css" media="screen" href="{Tem
platePath}/{TemplateName}/css/ie7.css" />
 <![endif]-->
 <!--[if lte IE 6]>
 <link rel="stylesheet" type="text/css" media="screen" href="{Tem
platePath}/{TemplateName}/css/ie6.css" />
 <![endif]-->
 </head>
 ...
</html>

Note: Conditional comments used CSS for should be placed inside the <head> tag of a
template after all other CSS have been linked for their affects to properly take place.

Loading From An Extension

Components

Often a component will have a style sheet of its own. Pushing CSS to the template from a
component is quite easy and involves only two lines of code.

ximport('Hubzero_Document');
Hubzero_Document::addComponentStylesheet('com_example');

First, we load the Hubzero_Document class. Next we call the static method
addComponentStylesheet, passing it the name of the component as the first (and only)
argument. This will first check for the presence of the style sheet in the active template's
overrides. If found, the path to the overridden style sheet will be added to the array of style
sheets the template needs to include in the <head>. If no override is found, the code then
checks for the existence of the CSS in the component's directory. Once again, if found, it gets
pushed to the template.

Modules

Loading CSS from a module works virtually the same as loading from a component save one

 183 / 225

/documentation/1.2.0/webdevs/templates/overrides

WEB DEVELOPERS

minor difference in code. Instead of calling the addComponentStylesheet method, we call the
addModuleStylesheet method and pass it the name of the module.

ximport('Hubzero_Document');
Hubzero_Document::addModuleStylesheet('mod_example');

Plugins

Loading CSS from a plugin works similarly to loading from a component or module but instead
we call the addPluginStylesheet method and pass it the name of the plugin group and the name
of the plugin.

ximport('Hubzero_Document');
Hubzero_Document::addPluginStylesheet('examples', 'test');

Plugin CSS must be named the same as the plugin and located within a directory of the same
name as the plugin inside the plugin group directory.

/plugins
 /examples
 /test
 test.css
 test.php
 test.xml

Further Help

Resources for learning and sharpening CSS skills:

CSS Zen Garden
CSS From The Ground Up
Guide to Cascading StyleSheets
CSS School

 184 / 225

http://www.csszengarden.com/
http://www.wpdfd.com/issues/70/css_from_the_ground_up/
http://www.htmlhelp.com/reference/css/
http://www.w3schools.com/css/

WEB DEVELOPERS

JavaScript

Overview

HUBzero comes with the jQuery Javascript Framework included by a system plugin. jQuery is
not only a visual effects library–it also support Ajax request and JSON notation, table sort, drag
& drop operations and much more. All current HUBzero JavaScripts are built on this framework.

Note: If running extensions that require the MooTools Javascript framework (Joomla's default),
the jQuery system plugin can be run in compatibility mode or turned off completely.

Directory & Files

jQuery

The jQuery framework can be found within the /media/system/js directory. It is a compressed
version used for production. An uncompressed version may be found at jquery.com.

/hubzero
 /media
 /system
 /js
 jquery.js
 jquery.noconflict.js

Most HUBzero templates will include some scripts of their own for basic setup, visual effects,
etc. These are generally stored in (but not limited to) a sub-directory, named /js, of the
template's main directory.

/hubzero
 /media
 /system
 /js
 jquery.fancybox.js
 jquery.fileuploader.js
 jquery.tools.js
 jquery.ui.js

Of the scripts commonly found in a HUBzero template, hub.jquery.js is perhaps the most

 185 / 225

http://jquery.com
http://jquery.com

WEB DEVELOPERS

important and it is strongly encouraged that developers include these files in their template.

MooTools

The MooTools framework can be found within the /media/system/js directory. Joomla! includes
both a compressed version used for production and an uncompressed version used for debug
mode and developer reference.

/hubzero
 /media
 /system
 /js
 mootools-uncompressed.js
 mootools.js

Most HUBzero templates will include some scripts of their own for basic setup, visual effects,
etc. These are generally stored in (but not limited to) a sub-directory, named /js, of the
template's main directory.

/hubzero
 /templates
 /{TemplateName}
 /js
 globals.js
 hub.js
 modal.js
 tooltips.js
 ...

Of the scripts commonly found in a HUBzero template, hub.js and globals.js are perhaps the
most important and it is strongly encouraged that developers include these files in their
template.

hub.js

jQuery

//---
// Create our namespace

 186 / 225

WEB DEVELOPERS

//---
if (!HUB) {
 var HUB = {};
}

//---
// Various functions - encapsulated in HUB namespace
//---
if (!jq) {
 var jq = $;

 $.getDocHeight = function(){
 var D = document;
 return Math.max(Math.max(D.body.scrollHeight, D.documentElement.scro
llHeight), Math.max(D.body.offsetHeight, D.documentElement.offsetHeigh
t), Math.max(D.body.clientHeight, D.documentElement.clientHeight));
 };
} else {
 jq.getDocHeight = function(){
 var D = document;
 return Math.max(Math.max(D.body.scrollHeight, D.documentElement.scro
llHeight), Math.max(D.body.offsetHeight, D.documentElement.offsetHeigh
t), Math.max(D.body.clientHeight, D.documentElement.clientHeight));
 };
}

HUB.Base = {
 // Container for jquery.
 // Needed for noconflict mode compatibility
 jQuery: jq,

 // Set the base path to this template
 templatepath: '/templates/hubbasic2012/',

 // launch functions
 initialize: function() {
 var $ = this.jQuery, w = 760, h = 520;

 // Set focus on username field for login form
 if ($('#username').length > 0) {
 $('#username').focus();
 }

 // Set the search box's placeholder text color
 if ($('#searchword').length > 0) {
 $('#searchword')

 187 / 225

WEB DEVELOPERS

 .css('color', '#777')
 .on('focus', function(){
 if ($(this).val() == 'Search') {
 $(this).val('').css('color', '#ddd');
 }
 })
 .on('blur', function(){
 if ($(this).val() == '' || $(this).val() == 'Search') {
 $(this).val('Search').css('color', '#777');
 }
 });
 }

 // Turn links with specific classes into popups
 $('a').each(function(i, trigger) {
 if ($(trigger).is('.demo, .popinfo, .popup, .breeze')) {
 $(trigger).on('click', function (e) {
 e.preventDefault();

 if ($(this).attr('class')) {
 var sizeString = $(this).attr('class').split(' ').pop();
 if (sizeString && sizeString.match('/d+xd+/')) {
 var sizeTokens = sizeString.split('x');
 w = parseInt(sizeTokens[0]);
 h = parseInt(sizeTokens[1]);
 }
 }

 window.open($(this).attr('href'), 'popup', 'resizable=1,scrollbar
s=1,height='+ h + ',width=' + w);
 });
 }
 if ($(trigger).attr('rel') && $(trigger).attr('rel').indexOf('exter
nal') !=- 1) {
 $(trigger).attr('target', '_blank');
 }
 });

 // Set the overlay trigger for launch tool links
 $('.launchtool').on('click', function(e) {
 $.fancybox({
 closeBtn: false,
 href: HUB.Base.templatepath + 'images/anim/circling-ball-
loading.gif'
 });
 });

 188 / 225

WEB DEVELOPERS

 // Set overlays for lightboxed elements
 $('a[rel=lightbox]').fancybox();

 // Init tooltips
 $('.hasTip, .tooltips').tooltip({
 position: 'top center',
 effect: 'fade',
 offset: [-4, 0],
 onBeforeShow: function(event, position) {
 var tip = this.getTip(),
 tipText = tip[0].innerHTML;

 if (tipText.indexOf('::') != -1) {
 var parts = tipText.split('::');
 tip[0].innerHTML = '' + parts[0] + '' + parts[1] + '';
 }
 }
 });

 // Init fixed position DOM: tooltips
 $('.fixedToolTip').tooltip({
 relative: true
 });
 }
};

jQuery(document).ready(function($){
 HUB.Base.initialize();
});

MooTools

If a template includes hub.js, it will be auto-loaded by the system (thus, no reason to specifically
declare it in your layout file). When loaded successfully, it will check for the inclusion of the
MooTools framework and its version. Should everything pass, the script will then load any other
scripts you declare in a comma-separated string.

var HUBzero = {
 Version: '1.1',
 require: function(libraryName) {
 // inserting via DOM fails in Safari 2.0, so brute force approach
 document.write('<script type="text/javascript" src="'+libraryName+

 189 / 225

WEB DEVELOPERS

'"></script>');
 },
 load: function() {
 if((typeof MooTools=='undefined') ||
 parseFloat(MooTools.version)
 throw("This HUB requires the MooTools JavaScript framework >= 1.
1.0");

 $A(document.getElementsByTagName("script")).each(function(s) {
 if (s.src && s.src.match(/hub.js(?.*)?$/)) {
 var path = s.src.replace(/hub.js(?.*)?$/,'');
 var includes = s.src.match(/?.*load=([a-z,]*)/);
 (includes ? includes[1] : 'globals,tooltips').split(',').each(
 function(include) { HUBzero.require(path+include+'.js') });
 }
 });
 }
}

HUBzero.load();

HUB Namespace

Wether using MooTools or jQuery, the template will include a file (hub.jquery.js) that first
establishes a HUB namespace and then proceeds through some basic setup routines. All
HUBzero built components, modules, and templates that employ JavaScript place scripts within
this HUB namespace. This helps prevent any naming collisions with third-party libraries. While it
is recommended that any scripts you may add to your code is also placed within the HUB
namespace, it is not required.

Note: When not using jQuery, the template will include a global.js file that establishes the HUB
namespace.

Some additional sub-spaces for further organization are available within the HUB namespace.
Separate spaces for Modules, Components, and Plugins are created. Once again, this further
helps avoid possible naming/script collisions. Additionally, one more Base space is created for
basic setup and utilities that may be used in other scripts.

// Create our namespace
if (!HUB) {
 var HUB = {};

 // Establish a space for setup/init and utilities
 HUB.Base = {};

 190 / 225

WEB DEVELOPERS

 // Establish sub-spaces for the various extensions
 HUB.Components = {};
 HUB.Modules = {};
 HUB.Plugins = {};
}

To demonstrate adding code to the namespace, below is code from a script in a component
named com_example.

// Create our namespace
if (!HUB) {
 var HUB = {};

 // sub-space for components
 HUB.Components = {};
}

// The Example namespace and init method
HUB.Components.Example = {
 init: function() {
 // do something
 }
}

// Initialize the code (jQuery)
jQuery(document).ready(function($){
 Components.Example.init();
});

/*
// Initialize the code (MooTools)
window.addEvent('domready', HUB.Components.Example.init);
*/

Loading From An Extension

Components

Occasionally a component will have scripts of its own. Pushing JavaScript to the template from
a component is quite easy and involves only a few lines of code.

 191 / 225

WEB DEVELOPERS

// Get the document object
$document =& JFactory::getDocument();
// Check if the file actually exist
if (is_file(JPATH_ROOT.DS.'components'.DS.'com_example'.DS.'example.js
')) {
 // Add the file to the list of scripts to be outputted in the templat
e
 $document->addScript('components'.DS.'com_example'.DS.'example.js');
}

First, we load the document object. Next we check for the existence of the JavaScript file we
wish to load. If found, we add it to the array of scripts that will be outputted in the <head> of the
site template.

Modules

Loading JavaScript from a module is the same as loading from a component save one minor
difference: the path to the JavaScript file is obviously different.

// Get the document object
$document =& JFactory::getDocument();
// Check if the file actually exist
if (is_file(JPATH_ROOT.DS.'modules'.DS.'mod_example'.DS.'mod_example.j
s')) {
 // Add the file to the list of scripts to be outputted in the templat
e
 $document->addScript('modules'.DS.'mod_example'.DS.'mod_example.js');
}

Plugins

Loading JavaScript from a plugin is the same as loading from a component or module save one
minor difference: the path to the JavaScript file is obviously different.

// Get the document object
$document =& JFactory::getDocument();
// Check if the file actually exist
if (is_file(JPATH_ROOT.DS.'plugins'.DS.'examples'.DS.'test.js')) {
 // Add the file to the list of scripts to be outputted in the templat
e

 192 / 225

WEB DEVELOPERS

 $document->addScript('plugins'.DS.'examples'.DS.'test.js');
}

 193 / 225

WEB DEVELOPERS

Output Overrides

Overview

There are many competing requirements for web designers ranging from accessibility to
legislative to personal preferences. Rather than trying to over-parameterise views, or trying to
aim for some sort of line of best fit, or worse, sticking its head in the sand, "Joomla!" has added
the potential for the designer to take over control of virtually all of the output that is generated.

Except for files that are provided in the "Joomla!" distribution itself, these methods for
customization eliminate the need for designers and developers to "hack" core files that could
change when the site is updated to a new version. Because they are contained within the
template, they can be deployed to the Web site without having to worry about changes being
accidentally overwritten when your System Administrator upgrades the site.

While Joomla! only allows for overriding views and some HTML, HUBzero has extended this
functionality to allow for overriding CSS as well. This allows for even more individualistic styling
of components and modules on HUBs.

Component Overrides

Note: Not all HUBzero modules will have layouts or CSS that can be overridden.

Layouts

Layout overrides only work within the active template and are located under the /html/ directory
in the template. For example, the overrides for "corenil" are located under
/templates/corenil/html/.

It is important to understand that if you create overrides in one template, they will not be
available in other templates. For example, "rhuk_milkyway" has no component layout overrides
at all. When you use this template you are seeing the raw output from all components. When
you use the "Beez" template, almost every piece of component output is being controlled by the
layout overrides in the template. "corenil" is in between having overrides for some components
and only some views of those components.

The layout overrides must be placed in particular way. Using "Beez" as an example you will see
the following structure:

/templates
 /beez
 /html
 /com_content (this directory matches the component directory na
me)

 194 / 225

WEB DEVELOPERS

 /articles (this directory matches the view directory na
me)
 default.php (this file matches the layout file name)
 form.php

The structure for component overrides is quite simple:
/html/com_{ComponentName}/{ViewName}/{LayoutName}.php.

Sub-Layouts

In some views you will see that some of the layouts have a group of files that start with the
same name. The category view has an example of this. The blog layout actually has three parts:
the main layout file blog.php and two sub-layout files, blog_item.php and blog_links.php. You
can see where these sub-layouts are loaded in the blog.php file using the loadTemplate
method, for example:

echo $this->loadTemplate('item');
// or
echo $this->loadTemplate('links');

When loading sub-layouts, the view already knows what layout you are in, so you don't have to
provide the prefix (that is, you load just 'item', not 'blog_item').

What is important to note here is that it is possible to override just a sub-layout without copying
the whole set of files. For example, if you were happy with the Joomla! default output for the
blog layout, but just wanted to customize the item sub-layout, you could just copy:

/components/com_content/views/category/tmpl/blog_item.php

to:

/templates/rhuk_milkyway/html/com_content/category/blog_item.php

When Joomla! is parsing the view, it will automatically know to load blog.php from com_content

 195 / 225

WEB DEVELOPERS

natively and blog_item.php from your template overrides.

Cascading Style Sheets

Over-ridding CSS is a little more straight-forward over-ridding layouts. Take the com_groups
component for example:

/components
 /com_groups
 ...
 com_groups.css (the component CSS file)

To override the CSS, we simply copy or create a new CSS file named the same and place it in
the template's overrides:

/templates
 /corenil
 /html
 /com_groups (this directory matches the component directory na
me)
 com_groups.css (this file matches the CSS file name)

To push CSS from a component to the template, add the following somewhere in the
component:

ximport('Hubzero_Document');
Hubzero_Document::addComponentStylesheet('com_example');

Module Overrides

Note: Not all HUBzero modules will have layouts or CSS that can be overridden.

Layouts

Modules, like components, are set up in a particular directory structure.

/modules
 /mod_latest_news

 196 / 225

WEB DEVELOPERS

 /tmpl
 default.php (the layout)
 helper.php (a helper file containing data logic)
 mod_latest_news.php (the main module file)
 mod_latest_news.xml (the installation XML file)

Similar to components, under the main module directory (in the example, mod_latest_news)
there is a /tmpl/ directory. There is usually only one layout file but depending on who wrote the
module, and how it is written, there could be more.

As for components, the layout override for a module must be placed in particular way. Using
"corenil" as an example again, you will see the following structure:

/templates
 /corenil
 /html
 /mod_latest_news (this directory matches the module directory
name)
 default.php (this file matches the layout file name)

Take care with overriding module layout because there are a number of different ways that
modules can or have been designed so you need to treat each one individually.

Cascading Style Sheets

Over-ridding CSS files works in precisely the same way as over-ridding layouts. Take the
mod_reportproblems module for example:

/modules
 /mod_reportproblems
 ...
 mod_reportproblems.css (the module CSS file)

To override the CSS, we simply copy or create a new CSS file named the same and place it in
the template's overrides:

/templates

 197 / 225

WEB DEVELOPERS

 /corenil
 /html
 /mod_reportproblems (this directory matches the module directo
ry name)
 mod_reportproblems.css (this file matches the CSS file name)

To push CSS from a module to the template, add the following somewhere in the module:

ximport('Hubzero_Document');
Hubzero_Document::addModuleStylesheet('mod_example');

Plugin Overrides

Note: Not all HUBzero plugins will have layouts or CSS that can be overridden.

Layouts

Plugins, like components and modules, are set up in a particular directory structure.

/plugins
 /groups
 forum.php (the main plugin file)
 forum.xml (the installation XML file)
 /forum
 /views
 /browse
 /tmpl
 default.php (the layout)
 default.xml (the layout installation XML file)

Similar to components, under the views directory of the plugin's self-titled directory (in the
example, forum) there are directories for each view name. Within each view directory is a /tmpl/
directory. There is usually only one layout file but depending on who wrote the plugin, and how
it is written, there could be more.

As with components and modules, the layout override for a plugin must be placed in a particular
way. Using "corenil" as an example again, you will see the following structure:

 198 / 225

WEB DEVELOPERS

/templates
 /corenil
 /html
 /plg_groups_forum (this directory follows the naming pattern o
f plg_{group}_{plugin})
 /browse (this file matches the layout directory name)
 default.php (this file matches the layout file name)

Take care with overriding plugin layout because there are a number of different ways that
plugins can or have been designed so you need to treat each one individually.

Cascading Style Sheets

Over-ridding CSS files works in precisely the same way as over-ridding layouts. Take the forum
plugin for groups for example:

/plugins
 /groups
 /forum
 forum.css (the plugin CSS file)

To override the CSS, we simply copy or create a new CSS file named the same and place it in
the template's overrides:

/templates
 /corenil
 /html
 /plg_groups_forum (this directory follows the naming pattern o
f plg_{group}_{plugin})
 forum.css (this file matches the CSS file name)

To push CSS from a module to the template, add the following somewhere in the module:

ximport('Hubzero_Document');
Hubzero_Document::addPluginStylesheet('groups', 'forum');

 199 / 225

WEB DEVELOPERS

Pagination Links Overrides

This override can control the display of items-per-page and the pagination links that are used
with lists of information. Most HUBzero templates will come with a pagination override that
outputs what we feel is a good standard for displaying pagination links and controls. However,
feel free to alter this as you see fit. The override can be found here:

/templates/{TemplateName}/html/pagination.php

When the pagination list is required, Joomla! will look for this file in the default templates. If it is
found it will be loaded and the display functions it contains will be used. There are four functions
that can be used:

pagination_list_footer
This function is responsible for showing the select list for the number of items to display
per page.

pagination_list_render
This function is responsible for showing the list of page number links as well at the Start,
End, Previous and Next links.

pagination_item_active
This function displays the links to other page numbers other than the "current" page.

pagination_item_inactive
This function displays the current page number, usually not hyperlinked.

Quick Reference

Using the corenil template as an example, here is a brief summary of the principles that have
been discussed.

Note: Not all HUBzero components, plugins, and modules will have layouts that can be
overridden.

Component Output

To override a component layout (for example the default layout in the article view), copy:

/components/com_content/views/article/tmpl/default.php

 200 / 225

WEB DEVELOPERS

to:

/templates/corenil/html/com_content/article/default.php

To override a component CSS (for example the stylesheet in the com_groups), copy:

/components/com_groups/com_groups.css

to:

/templates/corenil/html/com_groups/com_groups.css

To push CSS from a component to the template, add the following somewhere in the
component:

ximport('Hubzero_Document');
Hubzero_Document::addComponentStylesheet('com_example');

Module Output

To override a module layout (for example the Latest News module), copy:

/modules/mod_latest_news/tmpl/default.php

to:

/templates/corenil/html/mod_latest_news/default.php

 201 / 225

WEB DEVELOPERS

To override a module CSS (for example the stylesheet in the mod_reportproblems), copy:

/modules/mod_reportproblems/mod_reportproblems.css

to:

/templates/corenil/html/mod_reportproblems/mod_reportproblems.css

To push CSS from a module to the template, add the following somewhere in the module:

ximport('Hubzero_Document');
Hubzero_Document::addModuleStylesheet('mod_example');

Plugin Output

To override a plugin layout (for example the Forum plugin for groups), copy:

/plugins/groups/forum/views/browse/tmpl/default.php

to:

/templates/corenil/html/plg_groups_forum/browse/default.php

To override a plugin CSS (for example the stylesheet for the forum plugin for groups), copy:

/plugins/groups/forum/forum.css

to:

 202 / 225

WEB DEVELOPERS

/templates/corenil/html/plg_groups_forum/forum.css

To push CSS from a plugin to the template, add the following somewhere in the plugin:

ximport('Hubzero_Document');
Hubzero_Document::addPluginStylesheet('groups', 'forum');

Customise the Pagination Links

To customize the way the items-per-page selector and pagination links display, edit the
following file:

/templates/corenil/html/pagination.php

 203 / 225

WEB DEVELOPERS

Packaging

Preparation

File Structure

The most basic files, such as index.php, error.php, templateDetails.xml,
template_thumbnail.png, favicon.ico should be placed directly in your template folder. The most
common is to place images, CSS files, JavaScript files etc in separate folders. Joomla! override
files must be placed in folders in the folder "html".

/{TemplateName}
 /css
 ... CSS files ...
 /html
 ... Overrides ...
 /images
 ... Image files ...
 /js
 ... JavaScript files ...
 error.php
 index.php
 templateDetails.xml
 template_thumbnail.png
 favicon.ico

Thumbnail Preview Image

A thumbnail preview image named template_thumbnail should be included in your template.
Image size is 206 pixels in width and 150 pixels high. Recommended file format is PNG.

Packaging

Packaging a template for distribution is easy. Just "zip" up the module directory into a
compressed archive file. When the ZIP file is installed, the language file is copied to the
appropriate language sub-directory of /language/ and is loaded each time the template is
loaded. All of the other files are copied to the /templates/{TemplateName} subfolder of the HUB
installation.

Note to Mac OS X users

The Finder's "compress" menu item produces a usable ZIP format package, but with one catch.

 204 / 225

WEB DEVELOPERS

It stores the files in AppleDouble format, adding extra files with names beginning with "._".
Thus it adds a file named "._templateDetails.xml, which Joomla 1.5.x can sometimes
misinterpret. The symptom is an error message, "XML Parsing Error at 1:1. Error 4: Empty
document". The workaround is to compress from the command line, and set a shell environment
variable "COPYFILE_DISABLE" to "true" before using "compress" or "tar". See the AppleDouble
article for more information.

To set an environment variable on a Mac, open a terminal window and type:

export COPYFILE_DISABLE=true

Then in the same terminal window, change directories into where your template files reside and
issue the zip command. For instance, if your template files have been built in a folder in your
personal directory called myTemplate, then you would do the following:

cd myTemplate
zip -r myTemplate.zip *

 205 / 225

http://docs.joomla.org/AppleDouble
http://docs.joomla.org/AppleDouble

WEB DEVELOPERS

Socicons

Overview

In a single collection, Socicons is a pictographic language containing icons for some of the most
popular social and web services such as Twitter, Facebook, and Google.

Integration

The open source package contains several bootstrap CSS files and fonts for inclusion in your
template. Below is the necessary @font-face rules to start using Socicons.

@font-face {
 font-family: 'Socicons';
 src: url('/media/system/css/fonts/socicons-webfont.eot');
 src: url('/media/system/css/fonts/socicons-
webfont.eot?#iefix') format('embedded-opentype'),
 url('/media/system/css/fonts/socicons-
webfont.woff') format('woff'),
 url('/media/system/css/fonts/socicons-
webfont.ttf') format('truetype'),
 url('/media/system/css/fonts/socicons-
webfont.svg#SociconsRegular') format('svg');
 font-weight: normal;
 font-style: normal;
}

Socicons is relatively lightweight due to the limited number of icons available and can be either
included in the stylesheet into your site template or on a per use basis (e.g., individual
components).

Use

There are two primary ways to use the font, both with advantages and disadvantages. The first,
is to include the necessary HTML and unicode character directly into your markup.

The HTML:

 facebook

 206 / 225

https://hubzero.org/download

WEB DEVELOPERS

The CSS:

.facebook {
 font-family: "Socicons"
}

The advantage here is greater browser compatibility. @font-face is supported by even Internet
Explorer 6. The disadvantage, however, is that you now have to edit the HTML wherever you
wish to insert an icon which could change depending upon the styling and theme of your
template. That could quickly become a headache!

The alternative is to use the CSS pseudo-elements :before and :after. This takes a little more
setup in your styles but offers greater flexibility and ease of change. Unfortunately, pseudo-
elements are not supported in Internet Explorer 7 or older. There is, however, a solution which
we'll get to in a moment.

The HTML:

facebook

The CSS:

/* Note the :before pseudo-element */
small.facebook, /* for IE 7, more on that below */
.facebook:before {
 font-family: "Socicons"
 content: "\\f013"; /* unicode characters must start with a backsla
sh */
}

What about Internet Explorer 7?

.facebook {
 *zoom:expression(this.runtimeStyle['zoom']='1', this.innerHTML='<s
mall class="facebook"></small>' + this.innerHTML);

 207 / 225

WEB DEVELOPERS

}

We use <small> in the example above since it's a relatively unused tag and lessens the
potential for styling conflicts. It should be noted that over-use of this technique can slow down IE
7 as it has to process and dynamically include content into the page upon render.

Icon List

\\f002 Hub
\\f001 Hub alt
\\f006 Purdue
\\f005 Purdue alt
\\f013 Facebook
\\f012 Facebook alt
\\f026 Dropbox
\\f025 Dropbox alt

\\f011 Twitter
\\f010 Twitter alt
\\f019 Github
\\f018 Github alt
\\f024 PayPal
\\f023 PayPal alt
\\f02a eBay
\\f029 eBay alt

\\f017 LinkedIn
\\f016 LinkedIn alt
\\f01b Pinterest
\\f01a Pinterest alt
\\f022 Skype
\\f021 Skype alt
\\f028 Dribbble
\\f027 Dribbble alt

 208 / 225

WEB DEVELOPERS

\\f02c Google
\\f02b Google alt
\\f015 Google+
\\f014 Google+ alt
\\f01d Vimeo
\\f01e Vimeo alt
\\f01f YouTube
\\f01e YouTube alt

 209 / 225

WEB DEVELOPERS

Fontcons

Overview

In a single collection, Fontcons is a pictographic language designed for a full array of web-
related actions and content. Although originally inspired by Font Awesome, we've heavily
modified and added to the available icons; Fontcons brings over 250 icons for use in a package
equivalent in file size to just one or two bitmapped icons!

Integration

The open source package contains several bootstrap CSS files for inclusion in your template.
These stylesheets can be found in the web root's /media/system/css directory. Here, our
attention is on `fontcons.css` which contains the necessary @font-face rules to start using
Fontcons.

@font-face {
 font-family: 'Fontcons';
 src: url('/media/system/css/fonts/fontcons-webfont.eot');
 src: url('/media/system/css/fonts/fontcons-
webfont.eot?#iefix') format('embedded-opentype'),
 url('/media/system/css/fonts/fontcons-
webfont.woff') format('woff'),
 url('/media/system/css/fonts/fontcons-
webfont.ttf') format('truetype'),
 url('/media/system/css/fonts/fontcons-
webfont.svg#FontconsRegular') format('svg');
 font-weight: normal;
 font-style: normal;
}

While you can include Fontcons on a per use basis (e.g., individual components), due to it being
relatively light-weight and several Hubzero components making use of it, we recommend
including the stylesheet into your site template.

In the <head> of your template's html, reference the location to fontcons.css:

<link rel="stylesheet" href="/media/system/css/fontcons.css" />

 210 / 225

http://fortawesome.github.com/Font-Awesome/
https://hubzero.org/download

WEB DEVELOPERS

Or import fontcons.css into your site's CSS:

/* Note: import rules MUST come first */
@import "/media/system/css/fontcons.css";

/* Other styles here */

A word of caution on using @import: Internet Explorer 8 and older will download stylesheets in
sequence rather than in parallel. This can have effects on page speed and flashes of un-styled
content before the CSS files have finished downloading. See Steve Souder's "donâ€™t use
@import" for more details.

Use

There are two primary ways to use the font, both with advantages and disadvantages. The first,
is to include the necessary HTML and unicode character directly into your markup.

The HTML:

✎ edit

The CSS:

.edit {
 font-family: "Fontcons"
}

The advantage here is greater browser compatibility. @font-face is supported by even Internet
Explorer 6. The disadvantage, however, is that you now have to edit the HTML wherever you
wish to insert an icon which could change depending upon the styling and theme of your
template. That could quickly become a headache!

The alternative is to use the CSS pseudo-elements :before and :after. This takes a little more
setup in your styles but offers greater flexibility and ease of change. Unfortunately, pseudo-
elements are not supported in Internet Explorer 7 or older. There is, however, a solution which
we'll get to in a moment.

 211 / 225

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/
http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

WEB DEVELOPERS

The HTML:

edit

The CSS:

/* Note the :before pseudo-element */
small.edit, /* for IE 7, more on that below */
.edit:before {
 font-family: "Fontcons"
 content: "\\270E"; /* unicode characters must start with a backsla
sh */
}

What about Internet Explorer 7?

.edit {
 *zoom:expression(this.runtimeStyle['zoom']='1', this.innerHTML='<s
mall class="edit">✎</small>' + this.innerHTML);
}

We use <small> in the example above since it's a relatively unused tag and lessens the
potential for styling conflicts. It should be noted that over-use of this technique can slow down IE
7 as it has to process and dynamically include content into the page upon render.

Icon List

\\f000
\\266B
\\f002
\\2709
\\2665
\\2605
\\2606
\\f007
\\f008

 212 / 225

WEB DEVELOPERS

\\f009
\\f00a
\\f00b
\\2714
\\2716
\\f00e
\\f010
\\f011
\\f012
\\2699
\\f014
\\2302
\\f016
\\f017
\\2641
\\f01e
\\f018
\\f019
\\f01a
\\f01b
\\f01c
\\f01d
\\21BB
\\f083
\\f092
\\f085
\\f08e
\\f08d
\\f077
\\23F0
\\f071
\\f081
\\260E
\\f056
\\f067
\\f062
\\f044
\\f061
\\f069
\\f07f
\\f01f
\\269B
\\f09c
\\f095
\\f0a1
\\f0a2

 213 / 225

WEB DEVELOPERS

\\f0a3
\\f0ad
\\f0ae
\\f0b0
\\f0b2
\\f0e3
\\f0d0
\\f0ea

\\f021
\\f022
\\f023
\\2691
\\f025
\\f026
\\f027
\\f028
\\f029
\\f02a
\\f02b
\\f02c
\\f02d
\\f02e
\\2399
\\f030
\\f031
\\f032
\\f033
\\f034
\\f035
\\f036
\\f037
\\f038
\\f039
\\f03a
\\f03b
\\f03c
\\f03d
\\f03e
\\f082
\\2692
\\25F7

 214 / 225

WEB DEVELOPERS

\\f080
\\f084
\\26DF
\\f004
\\26D3
\\f00c
\\237E
\\f072
\\231B
\\f068
\\f005
\\f05c
\\f054
\\f063
\\f053
\\f07d
\\f07e
\\f05f
\\f09a
\\f08f
\\f0a4
\\f0a5
\\f0a6
\\f0a7
\\f0ca
\\f0cb
\\f0cc
\\f0cd
\\f0ce
\\f0db

\\270E
\\f041
\\f043
\\25D1
\\270D
\\f045
\\2611
\\f047
\\21E4
\\f049
\\219E

 215 / 225

WEB DEVELOPERS

\\25B6
\\f04c
\\2588
\\21A0
\\21E4
\\f049
\\f052
\\2039
\\203A
\\2295
\\2296
\\f057
\\f058
\\f059
\\f05a
\\f05b
\\2297
\\f05d
\\2298
\\f087
\\f088
\\f086
\\f091
\\f093
\\270B
\\f00d
\\f08a
\\f006
\\f003
\\f001
\\f094
\\f078
\\f040
\\f060
\\f05e
\\f08c
\\f079
\\f097
\\f098
\\f03f
\\f096
\\f09d
\\f0a8
\\f0a9
\\f0aa
\\f0ab

 216 / 225

WEB DEVELOPERS

\\f0b1
\\f0c1
\\f0c2
\\f0c3
\\2622
\\2746

\\2190
\\2192
\\2191
\\2193
\\f064
\\f065
\\f066
\\271A
\\2010
\\273D
\\f06b
\\f06c
\\f06d
\\2601
\\f046
\\f06e
\\f070
\\26A0
\\2757
\\2708
\\f073
\\f074
\\f075
\\f0e5
\\f0e6
\\f02f
\\2303
\\2304
\\267B
\\f07a
\\f07b
\\f07c
\\2195
\\2194
\\f076

 217 / 225

WEB DEVELOPERS

\\f090
\\f08b
\\f089
\\2661
\\26A1
\\2702
\\22EF
\\f055
\\f042
\\2693
\\275D
\\275E
\\f04a
\\f048
\\f04d
\\f04e
\\f06f
\\f04f
\\f09b
\\f0a0
\\f0d7
\\f0d8
\\f0d9
\\f0da
\\f0d6
\\f0ea
\\f0c5

 218 / 225

WEB DEVELOPERS

Elements & Typography

Grid

For laying out content on a page, the core hub framework includes styles for a 12-column grid.

...

...

...

...

...

...

...

...

...

...

...

...

The grid supports up to 12 columns with span# and offset# classes.

Each column must have a .col class. The last column in a set must have the .omega class
added for IE 7 to work properly. No clearing div is required.

For example, a four column grid would look like:

<div class="grid">
 <div class="col span3">
 ...
 </div>
 <div class="col span3">
 ...

 219 / 225

WEB DEVELOPERS

 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

Output:

...

...

...

...

Spanning Columns

Columns can be spanned to easier portion content on the page. In the following example, we
span the first 6 columns in a container, then follow with two, smaller 3 column containers for a
3-column layout where the first column takes up 50% of the space.

<div class="grid">
 <div class="col span6">
 ...
 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

Output:

 220 / 225

WEB DEVELOPERS

...

...

...

Offsets

Columns may also be offset or 'pushed' over.

<div class="grid">
 <div class="col span3 offset3">
 ...
 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

Output:

...

...

...

Helper Classes

.span-quarter
Span 3 columns. This is equivalent to .span3

.span-third
Span 4 columns. This is equivalent to .span4

.span-half
Span 6 columns. This is equivalent to .span6

.span-two-thirds
Span 8 columns. This is equivalent to .span8

 221 / 225

WEB DEVELOPERS

.span-three-quarters
Span 9 columns. This is equivalent to .span9

A four column grid with the helper classes:

<div class="grid">
 <div class="col span-quarter">
 ...
 </div>
 <div class="col span-quarter">
 ...
 </div>
 <div class="col span-quarter">
 ...
 </div>
 <div class="col span-quarter omega">
 ...
 </div>
</div>

There are equivalent .offset- classes as well:

.offset-quarter
Offset 3 columns. This is equivalent to .offset3

.offset-third
Offset 4 columns. This is equivalent to .offset4

.offset-half
Offset 6 columns. This is equivalent to .offset6

.offset-two-thirds
Offset 8 columns. This is equivalent to .offset8

.offset-three-quarters
Offset 9 columns. This is equivalent to .offset9

Markup for a four column grid with the offset helper class:

<div class="grid">
 <div class="col span-quarter">
 ...
 </div>
 <div class="col offset-quarter span-quarter">
 ...
 </div>
 <div class="col span-quarter omega">

 222 / 225

WEB DEVELOPERS

 ...
 </div>
</div>

Output:

...

...

...

Nesting Grids

The following is an example of a 3 column grid nested inside the first column of another 3
column grid.

<div class="grid">
 <div class="col span6">
 <div class="grid">
 <div class="col span4">
 ...
 </div>
 <div class="col span4">
 ...
 </div>
 <div class="col span4 omega">
 ...
 </div>
 </div>
 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

 223 / 225

WEB DEVELOPERS

Output:

...

...

...

...

...

Notifications

The core framework provides some base styles for alter and notifications.

<p class="passed">Success message</p>

Success message

<p class="info">Info message</p>

Info message

<p class="help">Help message</p>

Help message

<p class="warning">Warning message</p>

 224 / 225

WEB DEVELOPERS

Warning message

<p class="error">Error message</p>

Error message

Sections & Asides

The majority of hub components have content laid out in a primary content column with
secondary navigation or metadata in a smaller side column to the right. This is done by first
wrapping the entire content in a div with a class of .section. The content intended for the side
column is wrapped in a <div class="aside"> tag. The primary content is wrapped in a <div
class="subject"> tag and immediately follows the .aside column.

Note: The .aside column must come first in order for the content to be positioned properly. If,
unfortunately, this poses a semantic problem, we recommend using the grid system as a
potential alternative.

Using aside & subject differs from the grid system in that the .aside column has a fixed width
with the .subject column taking up the available left-over space. In the grid system, every
column is flexible (uses a percentage of the screen) and cannot have a specified, fixed width.

Example usage:

<div class="section">
 <div class="aside">
 Side column content ...
 </div>
 <div class="subject">
 Primary content ...
 </div>
 <div class="clear"></div>
</div>

Powered by TCPDF (www.tcpdf.org)

 225 / 225

http://www.tcpdf.org

