
COMMON TASKS & OBJECTS

Common Tasks & Objects

 1 / 38

COMMON TASKS & OBJECTS

Config

Joomla! Configuration

Accessing the global Joomla! site configuration:

$jconfig =& JFactory::getConfig();

Retrieving a value from the configuration:

echo $config->getValue('config.sitename');

HUB Configuration

Although rarer than accessing the global Joomla! site configuration, sometimes it is necessary
to access HUB-specific configurations. This can be done as follows:

$xhub =& XFactory::getHub();

Retrieving a value from the configuration:

echo $xhub->getCfg('hubShortName');

 2 / 38

COMMON TASKS & OBJECTS

Users & Profiles

Joomla User Object

Current User

Accessing the Joomla! User object for the current user can be done as follows:

$juser =& JFactory::getUser();

Other Users

To access user info for anyone not the current user (accepts user ID number or username):

$otheruser =& JUser::getInstance($id);

Any field from the user database table may then be accessed through the get('fieldname')
method:

$id = $juser->get('id');
$name = $juser->get('name');

Object Member Variables and Parameters

These are the relevant member variables automatically generated on a call to getUser():

id - The unique, numerical user id. Use this when referencing the user record in other
database tables.
name - The name of the user. (e.g. Vint Cerf)
username - The login/screen name of the user. (e.g. shmuffin1979)
email - The email address of the user. (e.g. crashoverride@hackers.com)
password - The encrypted version of the user's password
password_clear - Set to the user's password only when it is being changed. Otherwise,
remains blank.
usertype - The role of the user within Joomla!. (Super Administrator, Editor, etc...)
gid - Set to the user's group id, which corresponds to the usertype.
block - Set to '1' when the user is set to 'blocked' in Joomla!.
registerDate - Set to the date when the user was first registered.

 3 / 38

COMMON TASKS & OBJECTS

lastvisitDate - Set to the date the user last visited the site.
guest - If the user is not logged in, this variable will be set to '1'. The other variables will
be unset or default values.

In addition to the member variables (which are stored in the database in columns), there are
parameters for the user that hold preferences. To get one of these parameters, call the
getParam() member function of the user object, passing in the name of the parameter you want
along with a default value in case it is blank.

$user =& JFactory::getUser();
$language = $user->getParam('language', 'the default');

echo "<p>Your language is set to {$language}.</p>";

HUBzero Extended Profile

HUBzero comes with extended user profiles that allow for considerably more information than
the standard Joomla! User. Extended fields include information about disability, gender, race,
bios, picture, etc. To access an extended profile, use the XProfile object and load() method
(accepts user ID number or username).

// Import the needed library
ximport('Hubzero_User_Profile');

// Instantiate a new profile object
$profile = new Hubzero_User_Profile();

// Load the profile
$profile->load($id);

Any field from the user database table may then be accessed through the get('fieldname')
method:

$email = $profile->get('email');
$name = $profile->get('name');

Multi-option fields such as disability will return arrays.

 4 / 38

COMMON TASKS & OBJECTS

Checking if a User is logged in

Checking if a user is currently logged in can be done as follows:

// Call the user object
$juser =& JFactory::getUser();

// If 'guest' is true, they are logged OUT
// If 'guest' is false, they are logged IN
if ($juser->get('guest')) {
 return false;
}

Privileges

Not all authenticated users are given equal rights. For instance, a Super Administrator may be
able to edit anyone's content, while a Publisher may only be able to edit their own. The
authorize() member function can be used to determine if the current user has permission to do a
certain task. The first parameter is used to identify which component or function we wish to
authenticate against. The second represents the task. The third and fourth are optional; they
further break the permissions down into record types and ownership respectively.

In Joomla! 1.5, the rights for all of the core components are stored in
libraries/joomla/user/authorization.php. These are available to all extensions wherever
authentication is required. If the permission scheme of the Content component suits your
extension's needs, you can use code similar to the following to determine what functions to give
to a specific user.

$user =& JFactory::getUser();

if ($user->authorize('com_content', 'edit', 'content', 'all')) {
 echo "<p>You may edit all content.</p>";
} else {
 echo "<p>You may not edit all content.</p>";
}

if ($user->authorize('com_content', 'publish', 'content', 'own')) {
 echo "<p>You may publish your own content.</p>";
} else {
 echo "<p>You may not publish your own content.</p>";
}

 5 / 38

COMMON TASKS & OBJECTS

The permissions for core functions may not be suitable for your extension. If this is the case,
you can create your own permissions. You will probably want to add this code in a place where
it will always be executed, such as the beginning of the component you are building or in a
systemwide plugin. First, you need to get an authorization object using the getACL() member
function of JFactory. This works like getUser() in that it only creates one authorization object
during any particular Joomla! request. Once you have this object, call the addACL() member
function to add permissions. Pass in the name of your component or function, the task name,
the string 'users', and the user type (in lowercase) respectively. If you want to also define record
sets and ownership, pass those in as an additional two parameters.

Note that in Joomla! 1.5, permissions are not inherited. For example, if you give an
Administrator the right to edit content, Super Administrators do not automatically get this right;
you must grant it separately.

$auth =& JFactory::getACL();

$auth->addACL('com_userinfo15', 'persuade', 'users', 'super administra
tor');
$auth->addACL('com_userinfo15', 'persuade', 'users', 'administrator');
$auth->addACL('com_userinfo15', 'persuade', 'users', 'manager');

$user =& JFactory::getUser();

if ($user->authorize('com_userinfo15', 'persuade')) {
 echo "<p>You may persuade the system to do what you wish.</p>";
} else {
 echo "<p>You are not very persuasive.</p>";
}

Group Memberships

Sometimes you may have a component or plugin that is meant to be accessed by members of a
certain group or displays specific data based on membership in certain groups.

// Get the user object
$juser =& JFactory::getUser();

// Include a needed HUBzero library
ximport('Hubzero_User_Helper');

// Get the groups of the current logged-in user
$user_groups = Hubzero_User_Helper::getGroups($juser->get('id'));

 6 / 38

COMMON TASKS & OBJECTS

The getGroups() method is passed a user ID and returns an array of objects if any group
memberships are found. It will return false if no group memberships are found. Each object
contains data specifying the user's status within the group, among other things.

Array (
 [0] => stdClass Object (
 [published] => 1
 [cn] => greatgroup
 [description] => A Great Group
 [registered] => 1
 [regconfirmed] => 1
 [manager] => 0
)
 [1] => stdClass Object (
 [published] => 1
 [cn] => mygroup
 [description] => My Group
 [registered] => 1
 [regconfirmed] => 1
 [manager] => 1
)
)

published - 0 or 1, the published state of the group
cn - string, the group alias
description - string, the group title
registered - 0 or 1, if the user applied for membership to this group (only 0 if the user
was invited)
regconfirmed - 0 or 1, if the user's membership application has been accepted
(automatically 1 for invitees)
manager - 0 or 1, if the user is a manager of this group

 7 / 38

COMMON TASKS & OBJECTS

Database

Overview

Joomla! has been built with the ability to use several different kinds of SQL-database-systems
and to run in a variety of environments with different table-prefixes. In addition to these
functions, the class automatically creates the database connection. Besides instantiating the
object, at a minimum, you only need 2 lines of code to get a result from the database in a
variety of formats. Using the Joomla! database layer ensures a maximum of compatibility and
flexibility for your extension.

This tutorial looks at how to set and execute various queries.

Preparing The Query

// Get a database object
$db =& JFactory::getDBO();

$query = "SELECT * FROM #__example_table WHERE id = 999999;";
$db->setQuery($query);

First we instantiate the database object, then we prepare the query. You can use the normal
SQL-syntax, the only thing you have to change is the table-prefix. To make this as flexible as
possible, Joomla! uses a placeholder for the prefix, the "#__". In the next step, the
$db->setQuery(), this string is replaced with the correct prefix.

Now, if we don't want to get information from the database, but insert a row into it, we need one
more function. Every string-value in the SQL-syntax should be quoted. For example, MySQL
uses back-ticks `` for names and single quotes '' for values. Joomla! has some functions to do
this for us and to ensure code compatibility between different databases. We can pass the
names to the function $db->nameQuote($name) and the values to the function
$db->Quote($value).

A fully quoted query example is:

$query = "
 SELECT *
 FROM ".$db->nameQuote('#__example_table')."
 WHERE ".$db->nameQuote('id')." = ".$db->quote('999999').";
 ";

 8 / 38

COMMON TASKS & OBJECTS

Whatever we want to do, we have to set the query with the $db->setQuery() function. Although
you could write the query directly as a parameter for $db->setQuery(), it's commonly done by
first saving it in a variable, normally $query, and then handing this variable over. This helps
writing clean, readable code.

setQuery($query)

The setQuery($query) method sets up a database query for later execution either by the query()
method or one of the Load result methods.

$db =& JFactory::getDBO();
$query = "/* some valid sql string */";
$db->setQuery($query);

Note: The parameter $query must be a valid SQL string, it can either be added as a string
parameter or as a variable; generally a variable is preferred as it leads to more legible code and
can help in debugging.

setQuery() also takes three other parameters: $offset, $limit - both used in list pagination; and
$prefix - an alternative table prefix. All three of these variables have default values set and can
usually be ignored.

Executing The Query

To execute the query, Joomla! provides several functions, which differ in their return value.

Basic Query Execution

The query() method is the the basic tool for executing sql queries on a database. In Joomla! it is
most often used for updating or administering the database and not seen often for loading data.
This largely because the various load methods detailed on this page have the query step built in
to them.

The syntax is very straightforward:

$db =& JFactory::getDBO();
$query = "/* some valid sql string */";
$db->setQuery($query);
$result = $db->query();

 9 / 38

COMMON TASKS & OBJECTS

Note: $db->query() returns an appropriate database resource if successful, or FALSE if not.

Query Execution Information

getAffectedRows()
explain()
insertid()

Insert Query Execution

insertObject()

Query Results

The database class contains many methods for working with a query's result set.

Single Value Result

loadResult()

Use loadResult() when you expect just a single value back from your database query.

id name email username
1 John Smith johnsmith@example.

com
johnsmith

2 Magda Hellman magda_h@example.c
om

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

This is often the result of a 'count' query to get a number of records:

$db =& JFactory::getDBO();
$query = "
 SELECT COUNT(*)
 FROM ".$db->nameQuote('#__my_table')."
 WHERE ".$db->nameQuote('name')." = ".$db->quote($value).";
 ";
$db->setQuery($query);
$count = $db->loadResult();

 10 / 38

COMMON TASKS & OBJECTS

or where you are just looking for a single field from a single row of the table (or possibly
a single field from the first row returned).

$db =& JFactory::getDBO();
$query = "
 SELECT ".$db->nameQuote('field_name')."
 FROM ".$db->nameQuote('#__my_table')."
 WHERE ".$db->nameQuote('some_name')." = ".$db->quote($some_va
lue).";
 ";
$db->setQuery($query);
$result = $db->loadResult();

Single Row Results

Each of these results functions will return a single record from the database even though there
may be several records that meet the criteria that you have set. To get more records you need
to call the function again.

id name email username
1 John Smith johnsmith@example.co

m
johnsmith

2 Magda Hellman magda_h@example.co
m

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

loadRow()

loadRow() returns an indexed array from a single record in the table:

...
$db->setQuery($query);
$row = $db->loadRow();
print_r($row);

will give:

Array (
 [0] => 1
 [1] => John Smith

 11 / 38

COMMON TASKS & OBJECTS

 [2] => johnsmith@example.com
 [3] => johnsmith
)

You can access the individual values by using:

$row['index'] // e.g. $row['2']

Note:

1. The array indices are numeric starting from zero.
2. Whilst you can repeat the call to get further rows, one of the functions that

returns multiple rows might be more useful

loadAssoc()

loadAssoc() returns an associated array from a single record in the table:

$db->setQuery($query);
$row = $db->loadAssoc();
print_r($row);

will give:

Array (
 [id] => 1
 [name] => John Smith
 [email] => johnsmith@example.com
 [username] => johnsmith
)

You can access the individual values by using:

 12 / 38

COMMON TASKS & OBJECTS

$row['name'] // e.g. $row['name']

Whilst you can repeat the call to get further rows, one of the functions that returns
multiple rows might be more useful

loadObject()

loadObject() returns a PHP object from a single record in the table:

$db->setQuery($query);
$result = $db->loadObject();
print_r($result);

will give:

stdClass Object (
 [id] => 1
 [name] => John Smith
 [email] => johnsmith@example.com
 [username] => johnsmith
)

You can access the individual values by using:

$row->index // e.g. $row->email

Whilst you can repeat the call to get further rows, one of the functions that returns
multiple rows might be more useful

Single Column Results

Each of these results functions will return a single column from the database.

 13 / 38

COMMON TASKS & OBJECTS

id name email username
1 John Smith johnsmith@example.co

m
johnsmith

2 Magda Hellman magda_h@example.co
m

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

loadResultArray()

loadResultArray() returns an indexed array from a single column in the table:

$query = "
 SELECT name, email, username
 FROM . . . ";

$db->setQuery($query);
$column= $db->loadResultArray();
print_r($column);

will give:

Array (
 [0] => John Smith
 [1] => Magda Hellman
 [2] => Yvonne de Gaulle
)

You can access the individual values by using:

$column['index'] // e.g. $column['2']

Note:

1. The array indices are numeric starting from zero.
2. loadResultArray() is equivalent to loadResultArray(0)

 14 / 38

COMMON TASKS & OBJECTS

loadResultArray($index)

loadResultArray($index) returns an indexed array from a single column in the table:

$query = "
 SELECT name, email, username
 FROM . . . ";

$db->setQuery($query);
$column= $db->loadResultArray(1);
print_r($column);

will give:

Array (
 [0] => johnsmith@example.com
 [1] => magda_h@example.com
 [2] => ydg@example.com
)

You can access the individual values by using:

$column['index'] // e.g. $column['2']

loadResultArray($index) allows you to iterate through a series of columns in the results

$db->setQuery($query);
for ($i = 0; $i loadResultArray($i);
 print_r($column);
}

will give:

 15 / 38

COMMON TASKS & OBJECTS

Array ([0] => John Smith [1] => Magda Hellman [2] => Yvonne de G
aulle)
Array ([0] => johnsmith@example.com [1] => magda_h@example.com [
2] => ydg@example.com)
Array ([0] => johnsmith [1] => magdah [2] => ydegaulle)

The array indices are numeric starting from zero.

Multi-Row Results

Each of these results functions will return multiple records from the database.

id name email username
1 John Smith johnsmith@example.co

m
johnsmith

2 Magda Hellman magda_h@example.co
m

magdah

3 Yvonne de Gaulle ydg@example.com ydegaulle

loadRowList()

loadRowList() returns an indexed array of indexed arrays from the table records returned
by the query:

$db->setQuery($query);
$row = $db->loadRowList();
print_r($row);

will give:

Array (
 [0] => Array ([0] => 1 [1] => John Smith [2] => johnsmith@examp
le.com [3] => johnsmith)
 [1] => Array ([0] => 2 [1] => Magda Hellman [2] => magda_h@exam
ple.com [3] => magdah)
 [2] => Array ([0] => 3 [1] => Yvonne de Gaulle [2] => ydg@examp
le.com [3] => ydegaulle)
)

 16 / 38

COMMON TASKS & OBJECTS

You can access the individual values by using:

$row['index'] // e.g. $row['2']

and you can access the individual values by using:

$row['index']['index'] // e.g. $row['2']['3']

The array indices are numeric starting from zero.

loadAssocList()

loadAssocList() returns an indexed array of associated arrays from the table records
returned by the query:

$db->setQuery($query);
$row = $db->loadAssocList();
print_r($row);

will give:

Array (
 [0] => Array ([id] => 1 [name] => John Smith [email] => johnsmi
th@example.com [username] => johnsmith)
 [1] => Array ([id] => 2 [name] => Magda Hellman [email] => magd
a_h@example.com [username] => magdah)
 [2] => Array ([id] => 3 [name] => Yvonne de Gaulle [email] => y
dg@example.com [username] => ydegaulle)
)

 17 / 38

COMMON TASKS & OBJECTS

You can access the individual rows by using:

$row['index'] // e.g. $row['2']

and you can access the individual values by using:

$row['index']['column_name'] // e.g. $row['2']['email']

loadAssocList($key)

loadAssocList($key) returns an associated array - indexed on 'key' - of associated arrays
from the table records returned by the query:

$db->setQuery($query);
$row = $db->loadAssocList('username');
print_r($row);

will give:

Array (
 [johnsmith] => Array ([id] => 1 [name] => John Smith [email] =>
 johnsmith@example.com [username] => johnsmith)
 [magdah] => Array ([id] => 2 [name] => Magda Hellman [email] =>
 magda_h@example.com [username] => magdah)
 [ydegaulle] => Array ([id] => 3 [name] => Yvonne de Gaulle [ema
il] => ydg@example.com [username] => ydegaulle)
)

You can access the individual rows by using:

$row['key_value'] // e.g. $row['johnsmith']

 18 / 38

COMMON TASKS & OBJECTS

and you can access the individual values by using:

$row['key_value']['column_name'] // e.g. $row['johnsmith']['email
']

Note: Key must be a valid column name from the table; it does not have to be an Index
or a Primary Key. But if it does not have a unique value you may not be able to retrieve
results reliably.

loadObjectList()

loadObjectList() returns an indexed array of PHP objects from the table records returned
by the query:

$db->setQuery($query);
$result = $db->loadObjectList();
print_r($result);

will give:

Array (
 [0] => stdClass Object ([id] => 1 [name] => John Smith
 [email] => johnsmith@example.com [username] => johnsmith)
 [1] => stdClass Object ([id] => 2 [name] => Magda Hellman
 [email] => magda_h@example.com [username] => magdah)
 [2] => stdClass Object ([id] => 3 [name] => Yvonne de Gaulle
 [email] => ydg@example.com [username] => ydegaulle)
)

You can access the individual rows by using:

$row['index'] // e.g. $row['2']

 19 / 38

COMMON TASKS & OBJECTS

and you can access the individual values by using:

$row['index']->name // e.g. $row['2']->email

loadObjectList('key')

loadObjectList('key') returns an associated array - indexed on 'key' - of objects from the
table records returned by the query:

$db->setQuery($query);
$row = $db->loadObjectList('username');
print_r($row);

will give:

Array (
 [johnsmith] => stdClass Object ([id] => 1 [name] => John Smith
 [email] => johnsmith@example.com [username] => johnsmith)
 [magdah] => stdClass Object ([id] => 2 [name] => Magda Hellman
 [email] => magda_h@example.com [username] => magdah)
 [ydegaulle] => stdClass Object ([id] => 3 [name] => Yvonne de G
aulle
 [email] => ydg@example.com [username] => ydegaulle)
)

You can access the individual rows by using:

$row['key_value'] // e.g. $row['johnsmith']

and you can access the individual values by using:

$row['key_value']->column_name // e.g. $row['johnsmith']->email

 20 / 38

COMMON TASKS & OBJECTS

Note: Key must be a valid column name from the table; it does not have to be an Index
or a Primary Key. But if it does not have a unique value you may not be able to retrieve
results reliably.

Misc Result Set Methods

getNumRows()

getNumRows() will return the number of result rows found by the last query and waiting
to be read. To get a result from getNumRows() you have to run it after the query and
before you have retrieved any results.

$db->setQuery($query);
$db->query();
$num_rows = $db->getNumRows();
print_r($num_rows);
$result = $db->loadRowList();

will give:

3

Note: if you run getNumRows() after loadRowList() - or any other retrieval method - you
may get a PHP Warning.

 21 / 38

COMMON TASKS & OBJECTS

JTable

Overview

The JTable class is an implementation of the Active Record design pattern. It is used
throughout Joomla! for creating, reading, updating, and deleting records in the database table.

When properly extended, JTable gives you all of the basic functions you need for managing and
retrieving records in a database table. Member functions take care of the rest when you add
member variables, the table name, and the key column.

Writing an extension of JTable

To use JTable, create an extension of the class. In this example, we have a database table
containing recipes.

<?php

defined('_JEXEC') or die();

class TableRecipes extends JTable
{
 var $id = null;
 var $ingredients = null;
 var $instructions = null;
 var $serves = null;
 var $difficulty = null;
 var $prep_time = null;
 var $cook_time = null;
 var $published = 0;

 function __construct(&$db)
 {
 parent::__construct('#__recipes', 'id', $db);
 }
}

When naming your class extension, the convention is to prefix it with 'Table', then follow with a
CamelCased version of the table's name. All of the member variables of your class should
match the column names in the database. The default values should be valid according to the
table schema. For instance, if you have columns that are NOT NULL, you must use a value

 22 / 38

COMMON TASKS & OBJECTS

other than 'null' as the default.

Finally, create a constructor for the class that accepts a reference to the current database
instance. This will call the parent constructor which needs the name of the table, the name of
the primary key column, and the database instance. The name of the table uses #__ instead of
jos_, as the administrator can pick any table prefix desired during Joomla! installation.

If you were using this class as a part of a component called 'Recipes', you would place this code
in the file /administrator/components/com_recipes/tables/recipes.php.

Using a JTable class extension

Once the table class is in place, you can use it in any Joomla! extension. To include the file,
place this line in your extension's source code (use com_nameofyourcomponent in place of
com_recipes):

JTable::addIncludePath(JPATH_ADMINISTRATOR.DS.'components'.DS.'com_rec
ipes'.DS.'tables');

To get an instance of the object, use this code:

$row =& JTable::getInstance('recipes', 'Table');

Notice that the lowercase version of the suffix of your class name is used as the first parameter,
with the prefix 'Table' as the second. Also, the getInstance() member function of JTable returns
the object by reference instead of value.

In a model class (extends JModel) you can also use:

$row =& $this->getTable('recipes');

Notice that if you have not used the standard naming convention, you can supply the class
prefix as the optional second parameter.

Create/Update

 23 / 38

COMMON TASKS & OBJECTS

In a typical situation, you will have an HTML form submitted by the user which PHP will interpret
for you as an associative array. The JRequest class in Joomla! has functions ready to assist
with retrieving this data safely. Use JRequest::get('post') to retrieve all of the elements in the
HTTP POST request as a sanitized array.

Once you have this array, you can pass it into the bind() method of JTable. Doing this will match
the associated items of the array with member variables of the class. In the following example,
the array is retrieved from JRequest::get('post') and immediately passed into bind().

if (!$row->bind(JRequest::get('post'))) {
 return JError::raiseWarning(500, $row->getError());
}

If bind() fails, you want to stop the application and explain the failure before your extension
attempts to send the data. The raiseWarning() function of JError allows you to stop Joomla!,
while the getError() function returns the error message stored in the JTable object.

When binding succeeds and your object is ready, call the store() function. Again, if something
goes wrong, stop the application and explain why.

if (!$row->store()) {
 JError::raiseError(500, $row->getError());
}

Note:

If any member variables of your JTable object are null when store() is called, they are
ignored by default. This allows you to update specific columns of your table, while
leaving the others untouched. If you wish to override this behavior to ensure that all
columns have a value, pass true into store().
The JTable::bind() and JRequest::get() functions do not enforce data types. If you need
a column to be a specific type (for instance, integer), you need to add this logic to your
code before calling store().

Read

 24 / 38

COMMON TASKS & OBJECTS

To load a specific row of the database with JTable, pass the key into the load() member
function.

$row->load($id);

This relies on the key column you specified in the second parameter of parent::__construct()
when you extended JTable.

Delete

Like read(), delete() allows you to destroy a specific row in the table based on the key specified
earlier.

$row->delete($id);

If you want to delete multiple rows at once, you will need to write the query manually.

 25 / 38

COMMON TASKS & OBJECTS

Tags

Overview

The Tag class is a set of tools for adding, removing, editing, and displaying tags on objects. It is
used throughout HUB installations for adding tags to such things as resources, users, events,
and more.

When properly extended, Tags gives you all of the basic functions you need for managing and
retrieving tag records in the database table.

All tags are stored within a single table called "#__tags". The information that associates a
particular tag to a specific user, event or group, is stored in a table called "#__tags_object".
Storing the association data separate from the tag itself allows for a tag to be represented once
but be connected to multiple items. If that tag is ever changed for any reason, it will be
represented the same regardless of what object it is attached to.

The #__tags_object table stores, among other things, such data as the unique ID of the tag, the
unique ID of the object being tagged, and what component (or, potentially, table) that object
belongs to.

id objectid tagid tbl
1 77 6 resources
2 77 6 events

Here we have two entries that both link to a tag with an ID of "6" and both with object IDs of
"77". One entry is a resource and the other is an event. The "tbl" field is the most important
distinguishing factor; This allows us to have multiple objects with the same object ID, linking to
the same tag but not create a conflict.

Writing an extension of Tags

To use Tags, create an extension of the class. In this example, we're adding tags to our
"com_example" objects.

<?php
// Check to ensure this file is included in Joomla!
defined('_JEXEC') or die('Restricted access');

require_once(JPATH_ROOT.DS.'components'.DS.'com_tags'.DS.'helpers'.DS
.'handler.php');

class ExampleTags extends TagsHandler
{

 26 / 38

COMMON TASKS & OBJECTS

 public function __construct($db)
 {
 // The database connection object
 $this->_db = $db;
 // A unique name
 $this->_tbl = 'example';
 }
}

When naming your class extension, the convention is to have a CamelCased version of the
component's name suffixed with "Tags".

Finally, create a constructor for the class that accepts a reference to the current database
instance and the name to be used to uniquely identify tag data as belonging to your specific
component.

Using a Tag class extension

Once the class is created and in place, it can be included and instantiated

Create/Update

// Retrieve posted tags (comma delimitated string)
$tags = trim(JRequest::getVar('tags', ''));

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Tag the object
$et->tag_object($juser->get('id'), $object_id, $tags);

This method is the same for both adding tags to a previously untagged object and updating the
existing list of tags on an object.

Read

 27 / 38

COMMON TASKS & OBJECTS

get_tag_cloud($showsizes, $showadmintags, $object_id)

Returns a string of comma-separated tags.

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Get a tag cloud (HTML List)
$tags = $et->get_tag_cloud($showsizes, $showadmintags, $object_i
d);
print_r($tags);

will give:

My Tag, Your Tag, Their Tag

get_tag_cloud($showsizes, $showadmintags, $object_id)

Returns a tag cloud, derived of a an HTML list. Each tag is linked to the Tags
component and comprises one list item. A CSS class of "tags" on the list allows for
styling.

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Get a string of tags separated by commas
$tags = $et->get_tag_string($object_id);
print_r($tags);

will give:

 28 / 38

COMMON TASKS & OBJECTS

<ol class="tags">
 My Tag
 Your Tag
 Their Tag

get_tags_on_object($object_id)

Returns an array of associative arrays.

// Get the database object
$database =& JFactory::getDBO();

// Instantiate the tagging class
$et = new ExamplesTags($database);

// Get a string of tags separated by commas
$tags = $et->get_tags_on_object($object_id);
print_r($tags);

will give:

Array (
 [0] => Array (
 [tag] => 'mytag'
 [raw_tag] => 'My Tag'
 [tagger_id] => 32
 [admin] => 0
)
 [1] => Array (
 [tag] => 'yourtag'
 [raw_tag] => 'Your Tag'
 [tagger_id] => 32
 [admin] => 0
)
 [2] => Array (
 [tag] => 'theirtag'
 [raw_tag] => 'Their Tag'
 [tagger_id] => 32
 [admin] => 0
)

 29 / 38

COMMON TASKS & OBJECTS

)

Using the Tag Editor plugin

To make adding tags and editing a list of existing tags in a form, HUBzero offers a Tag Editor
plugin. To use the plugin in a view, do the following:

// Load the plugin
JPluginHelper::importPlugin('hubzero');
$dispatcher =& JDispatcher::getInstance();

// Trigger the event
$tf = $dispatcher->trigger('onGetMultiEntry', array(array('tags','tag
s','actags','',$tags)));

// Output
if (count($tf) > 0) {
 echo $tf[0];
} else {
 echo '<input type="text" name="tags" value="'. $tags .'" />';
}

The first parameter passed ('tags') tells the plugin that you wish to display a tags autocompleter.
The nest parameter is the name of the input field. The third is the ID of the input field. The fourth
is any CSS class you wish to assign to the input. The $tags variable here must be a string of
comma-separated tags.

 30 / 38

COMMON TASKS & OBJECTS

Search

 31 / 38

COMMON TASKS & OBJECTS

Retrieving GET & POST data

JRequest 'getVar' method

To retrieve GET/POST request data, Joomla! uses the getVar method of the JRequest class
(JRequest::getVar()).

Retrieving Data

If you have a form variable named 'address', you would want to use this code to get it:

$address = JRequest::getVar('address');

Unless other parameters are set, all HTML and trailing whitespace will be filtered out.

The DEFAULT Parameter

If you want to specify a default value in the event that 'address' is not in the request or is unset,
use this code:

$address = JRequest::getVar('address', 'Address is empty');
echo $address; // Address is empty

The SOURCE Parameter

Frequently, you will expect your variable to be found in a specific portion of the HTTP request
(POST, GET, etc...). If this is the case, you should specify which portion; this will slightly
increase your extension's security. If you expect 'address' to only be in POST, use this code to
enforce that:

$address = JRequest::getVar('address', 'default value goes here', 'pos
t');

The VARIABLE TYPE Parameter

The fourth parameter of getVar() can be used to specify certain filters to force validation of
specific value types for the variable.

 32 / 38

COMMON TASKS & OBJECTS

$address = JRequest::getVar('address', 'default value goes here', 'pos
t','variable type');

Here is a list of types you can validate:

INT
INTEGER
FLOAT
DOUBLE
BOOL
BOOLEAN
WORD
ALNUM
CMD
BASE64
STRING
ARRAY
PATH
USERNAME

The FILTER MASK Parameter

Finally, there are some mask constants you can pass in as the fifth parameter that allow you to
bypass portions of the filtering:

$address = JRequest::getVar('address', 'default value goes here', 'pos
t','validation type','mask type');

JREQUEST_NOTRIM - prevents trimming of whitespace
JREQUEST_ALLOWRAW - bypasses filtering
JREQUEST_ALLOWHTML - allows most HTML. If this is not passed in, HTML is
stripped out by default.

 33 / 38

COMMON TASKS & OBJECTS

Constants

Joomla! Constants

These constants are defined for use in Joomla and extensions:

DS Directory separator. "/"
JPATH_ADMINISTRATOR The path to the administrator folder.
JPATH_BASE The path to the installed Joomla! site.
JPATH_CACHE The path to the cache folder.
JPATH_COMPONENT The path to the current component being

executed.
JPATH_CONFIGURATION The path to folder containing the

configuration.php file.
JPATH_INSTALLATION The path to the installation folder.
JPATH_LIBRARIES The path to the libraries folder.
JPATH_PLUGINS The path to the plugins folder.
JPATH_ROOT The path to the installed Joomla! site.
JPATH_SITE The path to the installed Joomla! site.
JPATH_THEMES The path to the templates folder.
JPATH_XMLRPC The path to the XML-RPC Web service folder.

Note: These paths are the absolute paths of these locations within the file system, NOT the
path you'd use in a URL.

For URL paths, try using JURI::base.

 34 / 38

COMMON TASKS & OBJECTS

Scheduled Tasks

Plugins

A set of tasks can be registered with the Cron component by making a plugin. Each plugin must
respond to the "onCronEvents" trigger. The response from that trigger is an object (stdClass)
that returns the plugin's name and an array of callable tasks (event triggers).

Registering Tasks

Plugins should be placed within the cron plugins folder:

/myhub
 /plugins
 /cron

Here is an example of a cron plugin that registers a set of "mytasks" events.

/**
 * Cron plugin for my tasks
 */
class plgCronMytasks extends JPlugin
{
 /**
 * Return a list of events
 *
 * @return array
 */
 public function onCronEvents()
 {
 // Load the plugin's language file
 $this->loadLanguage();

 // Create the return object
 $obj = new stdClass();

 // Assign the plugin's name
 $obj->plugin = $this->_name;

 // Build the list of callable events
 $obj->events = array(
 array(

 35 / 38

COMMON TASKS & OBJECTS

 'name' => 'doSomething', // The name of your task
 'label' => JText::_('PLG_CRON_MYTASKS_DOSOMETHING'), // Nice lab
el
 'params' => '' // Name of the params group to load (optional)
)
);

 // Return the data
 return $obj;
 }
}

As shown in the previous example, each event consist of an array containing three keys: name,
label, and params.

name

The plugin must implement a method with the same name as whatever is specified for
the name key and the names should match exactly. That is, if a name of
'onJumpUpAndDown' is specified, then the plugin must have a method of
onJumpUpAndDown();.

label

This is a nice, human readable name for the event trigger. It should be a language key
with an associated string in the plugin's language file.

params

This is an optional value for specifying a params group (Joomla 1.5) or fieldset (Joomla
1.6+) containing parameters associated with the specific plugin event. This allows for
multiple cron jobs calling the same event but with varying values. An example of this can
be found in the support tickets cron plugin where the event sendTicketsReminder has a
specified params group of 'ticketreminder'. Changing those params would allow, for
instance, a job that sends ticket reminders one a month for all open tickets and a ticket
reminder once a week for all open and status: critical tickets.

A snippet from the support plugin, specifying the list of available tasks:

/**

 36 / 38

COMMON TASKS & OBJECTS

 * Cron plugin for support tickets
 */
class plgCronSupport extends JPlugin
{
 /**
 * Return a list of events
 *
 * @return array
 */
 public function onCronEvents()
 {
 $this->loadLanguage();

 $obj = new stdClass();
 $obj->plugin = $this->_name;

 $obj->events = array(
 array(
 'name' => 'onClosePending',
 'label' => JText::_('PLG_CRON_SUPPORT_CLOSE_PENDING'),
 'params' => 'ticketpending'
),
 array(
 'name' => 'sendTicketsReminder',
 'label' => JText::_('PLG_CRON_SUPPORT_EMAIL_REMINDER'),
 'params' => 'ticketreminder'
)
);

 return $obj;
 }
 ...
}

In the support plugin's manifest:

...
<fieldset group="ticketreminder">
 <field name="support_ticketreminder_severity" type="list" defaul
t="all" label="Tickets with severity" description="Ticket severit
y to message users about.">
 <option value="all">All</option>
 <option value="critical,major">High</option>

 37 / 38

COMMON TASKS & OBJECTS

 <option value="normal">Normal</option>
 <option value="minor,trivial">Low</option>
 </field>
 <field name="support_ticketreminder_group" type="text" menu="hid
e" label="For users in group" default="" description="Only users
within the group specified will be messaged." />
</fieldset>
...

Running Tasks

All tasks are run as standard plugin events. Tasks should return a boolean of true upon
completion.

See the managers documentation on how to create and schedule jobs.

Powered by TCPDF (www.tcpdf.org)

 38 / 38

/documentation/1.2.0/managers/maintenance.cron
http://www.tcpdf.org

