
EXTENSIONS (GENERAL)

Extensions (general)

Overview

Joomla! already is a rich featured content management system but if you're building a website
with Joomla! and you need extra features which aren't available in Joomla! by default, you can
easily extend it with extensions. There are five types of extensions for Joomla!: Components,
Modules, Plugins, Templates, and Languages. Each of these extensions handle specific
functionality.

Components

The largest and most complex of the extension types, a component is in fact a separate
application. You can think of a component as something that has its own functionality, its own
database tables and its own presentation. So if you install a component, you add an application
to your website. Examples of components are a forum, a blog, a community system, a photo
gallery, etc. You could think of all of these as being a separate application. Everyone of these
would make perfectly sense as a stand-alone system. A component will be shown in the main
part of your website and only one component will be shown. A menu is then in fact nothing more
then a switch between different components.

Hubzero Components

com_answers
com_blog
com_citations
com_contribtool
com_contribute
com_documentation
com_events
com_features
com_feedback
com_groups
com_hub
com_infrastructure
com_jobs
com_kb
com_meetings
com_members
com_myhub
com_register
com_resources
com_sef
com_store

 1 / 17

EXTENSIONS (GENERAL)

com_support
com_tags
com_tools
com_topics (alternate name for com_wiki)
com_usage
com_whatsnew
com_wiki (alternate name for com_topics)
com_wishlist
com_xflash
com_ximport
com_xpoll (supplants Joomla's com_poll)
com_xsearch (supplants Joomla's com_search)

Modules

Modules are extensions which present certain pieces of information on your site. It's a way of
presenting information that is already present. This can add a new function to an application
which was already part of your website. Think about latest article modules, login module, a
menu, etc. Typically you'll have a number of modules on each web page. The difference
between a module and a component is not always very clear for everybody. A module doesn't
make sense as a standalone application, it will just present information or add a function to an
existing application. Take a newsletter for instance. A newsletter is a module. You can have a
website which is used as a newsletter only. That makes perfectly sense. Although a newsletter
module probably will have a subscription page integrated, you might want to add a subscription
module on a sidebar on every page of your website. You can put this subscribe module
anywhere on your site.

Another commonly used module would be a search box you wish to be present throughout your
site. This is a small piece of re-usable HTML that can be placed anywhere you like and in
different locations on a template-by-template basis. This allows one site to have the module in
the top left of their template, for instance, and another site to have it in the right side-bar.

Hubzero Modules (front-end)

mod_events_cal
mod_events_latest
mod_featuredmember
mod_featuredquestion
mod_featuredresource
mod_feed_youtube
mod_findresources
mod_mycontributions
mod_myfavorites
mod_mygroups
mod_mymeetings

 2 / 17

EXTENSIONS (GENERAL)

mod_mymessages
mod_mypoints
mod_myprofile
mod_myquestions
mod_mysessions
mod_mysubmissions
mod_mytickets
mod_mytools
mod_mywishes
mod_notices
mod_polltitle
mod_popularfaq
mod_popularquestions
mod_quicktips
mod_quotes
mod_randomquote
mod_rapid_contact
mod_recentquestions
mod_reportproblems
mod_resourcemenu
mod_slideshow
mod_sliding_panes
mod_spotlight
mod_toptags
mod_twitterfeed
mod_whatsnew
mod_wishvoters
mod_xflash
mod_xlogin
mod_xlogin_mini
mod_xpoll
mod_xsearch
mod_xwhosonline

Hubzero Modules (back-end/administrative)

mod_dashboard

Plugins

Joomla! plugins serve a variety of purposes. As modules enhance the presentation of the final
output of the Web site, plugins enhance the data and can also provide additional, installable
functionality. Joomla! plugins enable you to execute code in response to certain events, either
Joomla! core events or custom events that are triggered from your own code. This is a powerful
way of extending the basic Joomla! functionality.

 3 / 17

EXTENSIONS (GENERAL)

Hubzero Plugins

content
xhubtags

groups
forum
members
messages
resources
wiki
wishlist

members
blog
contributions
favorites
groups
messages
points
resources
resume
topics
usage

resources
citations
favorites
questions
recommendations
related
reviews
share
supportingdocs
usage
versions
wishlist

support
xfeed
xhub

system
xfeed
xhub

tageditor
autocompleter

tags
answers
blogs
events

 4 / 17

EXTENSIONS (GENERAL)

groups
members
resources
support
topics

usage
chart
domainclass
domains
maps
overview
partners
region
tools

whatsnew
content
events
kb
resources
topics

xauthentication
hzldap

xhub
xlibrary

xmessage
email
handler
im
internal
rss
smstxt

xsearch
answers
blogs
content
events
kb
members
resources
tags
topics

Templates

A template is a series of files within the Joomla! CMS that control the presentation of the

 5 / 17

EXTENSIONS (GENERAL)

content. The template is not a website; it's also not considered a complete website design. The
template is the basic foundation design for viewing your website. To produce the effect of a
"complete" website, the template works hand-in-hand with the content stored in the database.

Languages

Probably the most basic extensions are languages. Languages can be packaged in two ways,
either as a core package or as an extension package. In essence, these files consist key/value
pairs, these pairs provide the translation of static text strings which are assigned within the
Joomla! source code. These language packs will affect both the front and administrator side.
Note: these language packs also include an XML meta file which describes the language and
font information to use for PDF content generation.

Conclusion

If the difference between the three types of extensions is still not completely clear, then it is
advisable to go to the admin pages of your Joomla! installation and check the components
menu, the module manager and the plugin manager. Joomla! comes with a number of core
components, modules and plugins. By checking what theyâ€™re doing, the difference between
the three types of building blocks should become clear. You can also check out the official
Joomla! extensions page. Browse through the extension categories and youâ€™ll be amazed
about the extension possibilities you have for your site.

 6 / 17

EXTENSIONS (GENERAL)

Installing

Installing From Package

Warning: Unlike a typical Joomla! 1.5 install, most HUBs do not have public write access to the
various extensions directories. Using this method may fail as a result. Contact your system
administrator for any necessary changes.

Joomla! 1.5 provides a convenient Installer utility in the administrative back-end. From here, one
can install new modules that have been packaged as .zip files. The installer moves all the
necessary files to their appropriate locations and creates any database entries needed.

Note: There is usually an upper limit to the size of files that can be uploaded within the web
server itself. This limit is set in the PHP configuration file and may differ between web servers
and hosts. Current HUB installs set the limit to 100MB. This limit cannot be altered from within
Joomla!. Contact your system administrator for help if needed.

1. Log in to the administrative back-end of the HUB you wish to install the module on.
2. Once logged-in navigate to the Extensions Installer. This can be found from the main

menu by following the "Install/Uninstall" option found in the drop-down under
"Extensions".

3. Under "Upload Package File", click on the "Browse" (note: some browsers/OSes may
have alternate wording) button. This will open the File Upload dialogue window.
Navigate to the location of the desired package file on the local hard drive. Select the
extension file and click the Open button. The dialogue window will disappear and the
path to, and name of, the extension file will appear in the File Upload field.

4. Click the "Upload File & Install" button to complete the transfer and installation of a copy
of the extension files from the local computer to the /yourhub/{ExtensionType}/ directory
tree. Note: Any language files packaged with the module will be moved to their
respective sub-directories of the /yourhub/language/ directory.

Installing From Directory

Joomla! 1.5 provides a convenient Installer utility in the administrative back-end. From here, one
can install new modules from an existing directory on the server. The installer moves all the
necessary files to their appropriate locations and creates any database entries needed.

1. If the module is packaged as a .zip file, unpack it onto the local hard drive before
uploading.

2. Upload the entire contents of the module via SSH/sFTP. Ideally the file should be
transferred to the
/www/yourhub/administrator/components/com_installer/module/yourmodulename
directory of Joomla!.

 7 / 17

EXTENSIONS (GENERAL)

See Accessing Files for further details on how to use SSH/sFTP.

3. Log in to the administrative back-end of the HUB.
4. Once logged-in navigate to the Extensions Installer. This can be found from the main

menu by following the "Install/Uninstall" option found in the drop-down under
"Extensions".

5. Under "Install from Directory" enter the exact location of the module file (it must be the
absolute location) in this example:
/www/yourhub/administrator/components/com_installer/module/yourmodulename.

6. Click the "Install" button to complete the installation. The appropriate module files will be
moved to the /yourhub/modules/ directory tree. Note: Any language files packaged with
the module will be moved to their respective sub-directories of the /yourhub/language/
directory.

Installing By Hand

Installing an extension by hand requires a few more steps than the Joomla! Extensions Installer
but is still a fairly easy and quick process.

1. If the extension is packaged as a .zip file, extract the files to a location on your local
machine.

2. Upload the entire contents of the extension, except language files, via SSH/sFTP to the
/yourhub/{ExtensionType}/ directory. Any language files associated with the extension
must be copied to their respective sub-directories of the /yourhub/language/ directory.

Components are unique in that they will typically have files installed in two locations:
/components and /administrator/components.

Extension Type Install Location
Component /yourhub/components/{ExtensionName}

/yourhub/administrator/components/{Extensi
onName}

Module /yourhub/modules/{ExtensionName}
Plugin /yourhub/plugins/{PluginType}/
Template /yourhub/templates/{ExtensionName}

See Accessing Files for further details on how to use SSH/sFTP.

3. Log in to the administrative back-end of the HUB.

4. Components

 8 / 17

/documentation/1.0.0/webdevs/index.fileaccess
/documentation/1.0.0/webdevs/index.fileaccess

EXTENSIONS (GENERAL)

1. Components do not technically need a database entry to function in their
simplest form. However, an entry is needed if one wishes to use parameters or
have the component appear under the "Components" list in the administrative
back-end. This must be done by hand via MySQL command-line, some form of
MySQL database GUI, or executing a PHP script. A sample SQL is provided
below:

INSERT INTO #__components(
 `id`,
 `name`,
 `link`,
 `menuid`,
 `parent`,
 `admin_menu_link`,
 `admin_menu_alt`,
 `option`,
 `ordering`,
 `admin_menu_img`,
 `iscore`,
 `params`,
 `enabled`
)
VALUES(
 '',
 'My Component',
 '',
 0,
 0,
 'option=com_mycomponent',
 'My Component',
 'com_mycomponent',
 0,
 'js/ThemeOffice/component.png',
 0,
 '',
 1
);

See Direct Database Access for further details on how to access a HUB's
database via command-line or GUI utility.

Modules

 9 / 17

/documentation/1.0.0/webdevs/index.databaseaccess

EXTENSIONS (GENERAL)

1. Once logged-in navigate to the Modules Manager. This can be found from the
main menu by following the "Modules Manager" option found in the drop-down
under "Extensions".

2. Click the "New" button in the toolbar. This will present you with a list of all
available modules, including those with existing directories but no database
entries (such as the one you just copied to /yourhub/modules/).

3. Find the name of your newly added module and click its radio button. Once
selected, click the "Next" button in the toolbar. This will take you to an "edit
module" screen where you may enter a title, adjust parameters, select a position,
etc.

4. Enter a title, adjust parameters, select a position, and enter any other necessary
information. Click "Save" in the toolbar.

Plugins

1. Unlike modules, there is no convenient Joomla! utility to create the necessary
database entry for us. This must be done by hand via MySQL command-line,
some form of MySQL database GUI, or executing a PHP script. A sample SQL is
provided below:

INSERT INTO #__plugins(
 `id`,
 `name`,
 `element`,
 `folder`,
 `access`,
 `ordering`,
 `published`,
 `iscore`,
 `client_id`,
 `checked_out`,
 `checked_out_time`,
 `params`
)
VALUES(
 '',
 'System - Hello World',
 'helloworld',
 'system',
 0,
 1,
 1,
 0,
 0,
 0,
 '0000-00-00 00:00:00',
 ''

 10 / 17

EXTENSIONS (GENERAL)

);

See Direct Database Access for further details on how to access a HUB's
database via command-line or GUI utility.

Templates

1. Once logged-in navigate to the Templates Manager. This can be found from the
main menu by following the "Template Manager" option found in the drop-down
under "Extensions".

2. Here you will be presented with a list of available templates. Your newly added
template should be available. To make it the default template of the site, select it
by clicking the radio button next to its name.

3. Click the "Default" button to make the template the default.

 11 / 17

/documentation/1.0.0/webdevs/index.databaseaccess

EXTENSIONS (GENERAL)

Uninstalling

Overview

If you wish to uninstall an extension on your Joomla! site, then follow these simple steps:

1. Select "Extensions" and then "Install / Uninstall" from the drop-down menu
2. Select the type of extension you wish to uninstall. You will have the choice between

Components, Modules, Plugins, Languages and Templates.
3. Find the extension you wish to uninstall and check the checkbox to the left of the

extension title.
4. In the upper-right corner of the screen, press "Uninstall"

It's as simple as that. If Joomla! can't uninstall the extension, you will be prompted with an error
message. If this happens, it's most likely to be caused by the extension. As extensions are
developed by third-party volunteers, you will have to try to get support from the developers of
the specific extension.

 12 / 17

EXTENSIONS (GENERAL)

Parameters

Overview

Coming soon.

 13 / 17

EXTENSIONS (GENERAL)

Languages

Overview

To create your own language file it is necessary that you use the exact contents of the default
language file and translate the contents of the define statements. Language files are INI files
which are readable by standard text editors and are set up as key/value pairs.

Working With INI Files

INI files have several restrictions. If a value in the ini file contains any non-alphanumeric
characters it needs to be enclosed in double-quotes ("). There are also reserved words which
must not be used as keys for ini files. These include: NULL, yes, no, TRUE, and FALSE. Values
NULL, no and FALSE results in "", yes and TRUE results in 1. Characters {}|&~![()" must not be
used anywhere in the key and have a special meaning in the value. Do not use them as it will
produce unexpected behavior.

Files are named after their internationally defined standard abbreviation and may include a
locale suffix, written as language_REGION. Both the language and region parts are abbreviated
to alphabetic, ASCII characters. A user from the USA would expect the language English and
the region USA, yielding the locale identifier "en_US". However, a user from the UK may expect
a region of UK, yielding "en_UK".

Setup

As previously mentioned, language files are setup as key/value pairs. A key is used within the
widget's view and the translator retrieves the associated string for the given language. The
following code is an extract from a typical widget language file.

; Module - Example (en_US)
MOD_EXAMPLE_HERE_IS_LINE_ONE = "Here is line one"
MOD_EXAMPLE_HERE_IS_LINE_TWO = "Here is line two"
MOD_EXAMPLE_MYLINE = "My Line"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of {ExtensionPrefix}_{WidgetName}_{TextName} for naming.

Table 1: Translation key prefixes for the various extensionsExtension Type Key Prefix
Component COM_

 14 / 17

EXTENSIONS (GENERAL)

Extension Type Key Prefix
Module MOD_
Plugin PLGN_
Template TMPL_

Adhering to this naming convention is not required but is strongly recommended as it can help
avoid potential translation collisions. Since a component can potentially have modules loaded
into it, the possibility of a widget and a module having the same translation key arises. To
illustrate this, we have the following example of a component named mycomponent that loads a
module named mymodule.

The language files for both:

; mymodule en_US.ini
MYLINE = "Your Line"

; mycomponent en_US.ini
MYLINE = "My Line"

The layout files for both:

<!-- mymodule layout -->
<php echo JText::_('MYLINE'); ?>

<!-- mycomponent layout -->
<div>
 <!-- Load the module -->
 <php echo XModuleHelper::renderModule('mymodule'); ?>
 <!-- Translate some component text -->
 <php echo JText::_('MYLINE'); ?>
</div>

 15 / 17

EXTENSIONS (GENERAL)

Outputs:

<div>
 <!-- Load the module -->
 Your Line
 <!-- Translate some component text -->
 Your Line
</div>

Since the module is loaded in the component view, i.e. after the component's translation files
have been loaded, the module's instance of MYLINE overwrites the existing MYLINE from the
component. Thus, the view outputs "Your Line" for the component translation instead of the
expected "My Line". Using the HUBzero naming convention of adding component and module
name prefixes helps avoid such errors:

The language files for both:

; mymodule en-US.ini
MOD_MYMODULE_MYLINE = "Your Line"

; mycomponent en-US.ini
COM_MYCOMPONENT_MYLINE = "My Line"

The view files for both:

<!-- mymodule view -->
<php echo JText::_('MOD_MYMODULE_MYLINE'); ?>

<!-- mycomponent view -->
<div>
 <!-- Load the module -->
 <php echo $this->Widgets()->renderWidget('mywidget'); ?>
 <!-- Translate some module text -->
 <php echo JText::_('COM_MYCOMPONENT_MYLINE'); ?>

 16 / 17

EXTENSIONS (GENERAL)

</div>

Outputs:

<div>
 <!-- Load the widget -->
 Your Line
 <!-- Translate some module text -->
 My Line
</div>

To Further avoid potential collisions as it is possible to have a component and module with the
same name, module translation keys are prefixed with MOD_ and component translation keys
with COM_.

Translating Text

A translate helper (JText) is available in all views and the appropriate language file for an
extension is preloaded when the extension is instantiated. This is all done automatically and
requires no extra work on the developer's part to load and parse translations.

Below is an example of accessing the translate helper:

<p><?php echo JText::_("MOD_EXAMPLE_MY_LINE"); ?></p>

Strings or keys not found in the current translation file will output as is.

Further Help

For further help with language files, including creating and distributing your own translations to
existing extensions, see Joomla!'s documentation.

Powered by TCPDF (www.tcpdf.org)

 17 / 17

http://docs.joomla.org/How_to_distribute_languages_for_native_Joomla%21_1.5_extensions
http://www.tcpdf.org

