
TOOL DEVELOPERS

Tool Developers

Learn how to create new simulation and modeling tools and publish them on a HUB. Sections
include:

Overview of Tool Development Process
Using Subversion Source Code Control
Rappture Toolkit for Creating Graphical User Interfaces
Rappture web site

 1 / 31

http://nanohub.org/resources/3863
http://nanohub.org/resources/3061
http://nanohub.org/resources/240
http://rappture.org

TOOL DEVELOPERS

Overview

Tool Development Process

Each hub relies on its user community to upload tools and other resources. Hubs are normally
configured to allow any user to upload a tool. The process starts with a particular user filling out
a web form to register his intent to submit a tool. This tells the hub manager to create a new
project area for the tool. The user then uploads code into a Subversion source code repository,
and develops the code within a workspace. The user can work alone or with a team of other
users. When the tool is ready for testing, the hub manager installs the tool and asks the
development team to approve it. Then, the hub manager takes one last look at the tool, and if
everything looks good, moves the tool to the "published" state. Of course, a tool can be
improved even after it is published, and re-installed, approved, and published over and over
again.

The complete process is explained in the tool maintenance documentation for hub managers.
Additional details about this process can be found in the following seminars:

 Overview of Tool Development Process
 Using Workspaces
 Using Subversion for Source Code Control

Creating Graphical User Interfaces

If a tool already has a graphical user interface that runs under Linux/X11, then it can be
published as-is, usually in a matter of hours. There are two caveats:

If the tool relies heavily on graphics, it may not perform very well within HUBzero
execution containers. Our containers run in cluster nodes without graphics cards, and
are therefore configured with MESA for software emulation of OpenGL. This has much
poorer performance than ordinary desktop computers with a decent graphics card, so
frame rates are much lower. Also, all graphics are transmitted to the user's web browser
after rendering, again lowering the frame rate. You can expect to achieve a few frames
per second in the hub environment--good enough to view and interact with the data, but
far below 100 frames/sec that you would normally see on a desktop computer.
Tools running within the hub have access to the hub's local file system--not the
user's desktop. Many tools have a File menu with an Open option. When a user
invokes this option within the hub environment, it will bring up a file dialog showing the
hub file system. The user won't see his own local files there unless he uploads them first
via sftp, webdav, or the hub's importfile command.

The graphical user interface for any tool published in the hub environment can be created using
standard toolkits for desktop applications--including Java, Matlab, Python/QT, etc.

 2 / 31

/documentation/1.0.0/managers/maintenance.tools
http://nanohub.org/resources/3863
http://nanohub.org/resources/3081
http://nanohub.org/resources/3061

TOOL DEVELOPERS

If you're looking for an easy way to create a graphical interface for a legacy tool or simple
modeling code, check out the Rappture Toolkit that is included as part of HUBzero. Rappture
reads a simple XML-based description of a tool and generates a graphical user interface
automatically. It interfaces naturally with many programming languages, including C/C++,
Fortran, Matlab, Python, Perl, Tcl/Tk, and Ruby. It creates tools that look something like the
following:

Rappture was designed for the hub environment and therefore addresses the caveats listed
above. All Rappture-based tools have integrated visualization capabilities that take advantage
of hardware-accelerated rendering available on the HUBzero rendering farm. Rappture-based
tools also include options to upload/download data from the end user's desktop via the
importfile/exportfile commands available within HUBzero.

For more details about Rappture, see the following links:

Rappture Quick Overview
Developing Scientific Tools for the HUBzero Platform (introductory course with 7
lectures)
Rappture Reference Manual

 3 / 31

http://rappture.org
https://nanohub.org/infrastructure/rappture/wiki/whatIsRappture
http://hubzero.org/resources/tooldev
https://nanohub.org/infrastructure/rappture/wiki/Documentation

TOOL DEVELOPERS

Invoking tools with invoke scripts

Overview

Invoke scripts are small programs, usually written in sh or bash, used to setup the application
container environment so the tool can run properly. More specifically, invoke scripts are
responsible for:

 Locating tool.xml for Rappture applications
 Setting up the PATH and other optional environment variables
 Starting the window manager
 Starting optional subprograms, like filexfer
 Starting the application

For most applications, the invoke script is a single command that calls the default HUBzero
invoke script, named invoke_app, with a few options set. In some rare situations, the tool needs
the application container setup in a manner that invoke_app cannot handle. In these cases, the
tool developer can modify the tool's invoke script to appropriately setup the application
container.

The sections below list out details regarding the options of invoke_app, how to launch Rappture
tools using an invoke script that calls invoke_app, and how to launch non-Rappture tools using
an invoke script that calls invoke_app.

invoke_app and its options

HUBZero's default tool invocation script is called invoke_app. It is a bash script, usually located
in /apps/invoke/current. When called with no options, the script tries to automatically find the
needed information to start the applications. There are a number of options that can be provided
to alter the script's behavior.

invoke_app accepts the following options:

 -A tool arguments
 -c execute command in background
 -C command to execute for starting the tool
 -e environment variable (${VERSION} substituted with $TOOL_VERSION)
 -f No FULLSCREEN
 -p add to path (${VERSION} substituted with $TOOL_VERSION)
 -r rappture version
 -t tool name
 -T tool root directory
 -u use envionment packages
 -v visualization server version

 4 / 31

TOOL DEVELOPERS

 -w specify alternate window manager

Here is a detailed description of the options:

 -A pass the provided enquoted arguments onto
the tool.

Example usage:

-A "-q blah1 -w blah2"

The options -q and -w are not parsed by invoke,
but are passed on to the tool

 -c Commands to run in the background before
the tool launches.

Exmple usage:

-c "echo hi" -c "filexfer"

This prints "hi" to stdout and starts filexfer
 -C Command to execute for starting tool. Tool's

command line arguments can be included in
this option, or can be placed in the -A option.

Example usage:

Call a program, named myprog, located in the
tool's bin directory:

-C @tool/bin/myprog

Call a program, named myprog, located in the
tool's bin directory, with program arguments "-e
val1" and "-b val2":

-C "@tool/bin/myprog -e val1 -b val
2"

 5 / 31

TOOL DEVELOPERS

Call a program, named myprog, located in the
tool's bin directory with arguments -e val1 and
-b val2, used in conjunction with invoke_app's
-A option:

-C @tool/bin/myprog -A "-e val1 -b
val2"

Call a program, named myprog, located in the
tool's bin directory. We can omit the path of the
program if it is an executable and located in the
tool's bin directory because the tool's bin
directory is added to the PATH environment
variable. This would not work for calling a Perl
script in a fashion similar to perl myscript.pl
because in this case, perl is executable and
myscript.pl is the argument.:

-C myprog

Call simsim with no arguments:

-C /apps/rappture/bin/simsim

Call simsim with the options -tool and -values,
to be parsed by simsim:

-C "/apps/rappture/bin/simsim -tool
 driver.xml -values random"

Call simsim with the options -tool and -values,
to be parsed by simsim:

-C /apps/rappture/bin/simsim -A "-t
ool driver.xml -values random"

 -e Set an environment variable.

Example usage:

 6 / 31

TOOL DEVELOPERS

-e LD_LIBRARY_PATH=@tool/../${VERSI
ON}/lib:${LD_LIBRARY_PATH}

Within the value part of this option's argument,
the text ${VERSION} is automatically
substituted with the value of the variable
${TOOL_VERSION}. Similarly, the text @tool is
substituted with the value of ${TOOLDIR}. By
setting the environment variable, you are
overwritting its previous value.

 -f no full screen - disable FULLSCREEN
environment variable, used by Rappture, to
expand the window to the full available size of
the screen.

 -p Prepend to the PATH environment variable.

Example usage:

-p @tool/../${VERSION}/bin

 Within the value part of this option's argument,
the text ${VERSION} is automatically
substituted with the value of the variable
${TOOL_VERSION}. Similarly, the text @tool is
substituted with the value of ${TOOLDIR}. By
setting this option the PATH environment
variable is adjusted, but not overwritten.

 -r sets RAPPTURE_VERSION which dictates
which version of rappture is used and may
manipulate the version of the tool that is run. If
left blank, the version will be determined by
looking at $SESSIONDIR/resources file.

 Accpetable values include "test", "current",
"dev".

 When RAPPTURE_VERSION is "test",
RAPPTURE_VERSION is reset to current and
TOOL_VERSION is set to dev. The current
version of rappture is used and the dev version
of the tool is used when launching the program.

 When RAPPTURE_VERSION is "current",

 7 / 31

TOOL DEVELOPERS

TOOL_VERSION is set to "current". The
current version of rappture is used and the
current version of the tool is used when
launching the program.

 When RAPPTURE_VERSION is "dev",
TOOL_VERSION is set to "dev". The dev
version of rappture is used and the dev version
of the tool is used when launching the tool.

 -t sets ${toolname} which is used while setting
up tool paths for TOOLDIR and TOOLXML.
${toolname} is the short name (or project name)
of the tool. It is the same as the name used in
the source code repository. With respect to the
tool contribution process, it is the "toolname" in
the path
/apps/toolname/version/rappture/tool.xml.
Setting this option will change the paths
searched while trying to locate tool.xml and the
bin directory.

 -T Tool root directory. This is the directory
holding a checked out version of the code from
the source code repository. It typically has the
src, bin, middleware, rappture, docs, data, and
examples directories underneath it. With
respect to the tool contribution process, it is the
"/apps/toolname/version" in the path
/apps/toolname/version/rappture/tool.xml.
Setting this option will change the paths
searched while trying to locate tool.xml and the
bin directory. Typically when testing this option
is used to specify where the tool directory is. In
this case, its the present working directory:

-T $PWD

 -u Set use scripts to invoke before running the
tool.

Example usage:

-u octave-3.2.4 -u petsc-3.1-real-
gnu

These would setup octave-3.2.4 and petsc-3.1
in the environment that your tool would launch
in.

 8 / 31

TOOL DEVELOPERS

 -v Visualization server version. This option
changes which visualization servers are setup
in the file $SESSIONDIR/resouces. Currently,
the only recognized option is dev. If left blank
this option defaults to the "current" visualization
servers. This option essentially decides whether
to run the script update_vis or update_viz_dev.

Example:

-v dev

This option irrelevant if no visualization server is
available.

 -w set the window manager. The default value is
to use the ratpoison window manager if it
exists. If ratpoison is not installed on the
system, look for the icewm captive window
manager setup. Use this flag to choose an
alternative window manager. Valid values for
this option include: "ratpoison" and "captive"

Examples:

Use the icewm captive window manager.

-w captive

Use the ratpoison window manager.

-w ratpoison

invoke_app is called from within a tool's invoke script. The invoke script is stored in the
middleware directory of the tool's source code repository.

Using invoke_app with Rappture tools

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a Rappture application looks similar to this:

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\

 9 / 31

TOOL DEVELOPERS

 -t calc

In the invoke script above, invoke_app, located in the directory /apps/invoke/current, is called
with "$@" and "-t calc". "$@" represents all options that the invoke script itself received. "-t calc"
tells invoke_app that the toolname is "calc". This information is used by invoke_app to figure out
which tool it is supposed to be launching and where that tool is installed.

For most Rappture applications, the invoke script is very simple. The above is enough for
invoke_app to start looking for a tool.xml file. invoke_app looks for the file named tool.xml. It
uses the TOOLDIR variable to help decide where to look. If the tool.xml file is not found in the
${TOOLDIR}/rappture directory, invoke_app will exit explaining that it could not find the tool.xml
file. The TOOLDIR variable can be set from the command line using the -T flag:

/apps/invoke/current/invoke_app "$@" -t calc -T ${PWD}

Actually, it is more common to see the -T flag provided to a tool's invoke script, and the option is
forwarded to invoke_app by "$@":

./middleware/invoke -T ${PWD}

In the above example, the TOOLDIR variable is set to the present working directory, which is
stored in the variable PWD. Specifying the -T option is usually not needed, but can help when
invoke_app is confused on what it is supposed to be launching.

Using invoke_app with non-Rappture tools

Invoke scripts should be placed in the middleware directory of the tool's source code repository.
A typical invoke script for a non-Rappture application looks similar to this:

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t calc \\
 -C calc \\
 -c filexfer \\
 -w captive

 10 / 31

TOOL DEVELOPERS

In the invoke script above, invoke_app, located in the directory /apps/invoke/current, is called
with "$@", "-t calc", "-C calc", "-c filexfer", "-w captive". "$@" represents all options that the
invoke script itself received. "-t calc" tells invoke_app that the toolname is "calc". This
information is used by invoke_app to figure out which tool it is supposed to be launching and
where that tool is installed. "-C calc" tells invoke_app that the command to run to start the tool is
"calc". "-c filexfer" tells invoke_app to start up the filexfer program before starting the tool's
graphical user interface. "-w captive" tells invoke_app to use the icewm captive window
manager. For non-rappture applications the icewm captive window manager may be preferred
over the ratpoison window manager if there are multiple graphical user interface windows that
could popup.

The invoke script above could be made more svelte if the we did not want to start filexfer and
we wanted to use the ratpoison window manager. After all, not all applications require files from
the user, so they don't need the filexfer program. Here's an example of the tool named calc (the
"-t calc" option), that is started by the executable named calc (the "-T calc" option), and uses the
default window manager which is ratpoison.

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t calc \\
 -C calc

Other invoke script examples

Here are a few common invoke scripts examples that demonstrate using invoke_app options.

Use the -u option to setup Octave-3.2.4 in the path before starting the tool's graphical user
interface. The -u option sources a "use" script (octave-3.2.4 in this example) from the
/apps/environ directory.

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t calc \\
 -C calc \\
 -u octave-3.2.4

 11 / 31

TOOL DEVELOPERS

Use the -A option to send additional arguments to the command to be executed:

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t calc \\
 -C calc \\
 -A "-value 13 -value 5 -op add"

Or:

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t calc \\
 -C "calc -value 13 -value 5 -op add"

Launching a Matlab tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t app-fermi

Launching a Python tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

/apps/invoke/current/invoke_app "$@" \\
 -t app-fermi

Launching a Java tool (named app-fermi) with a Rappture graphical user interface:

#!/bin/sh

 12 / 31

TOOL DEVELOPERS

/apps/invoke/current/invoke_app "$@" \\
 -t app-fermi

 13 / 31

TOOL DEVELOPERS

Combining Tools

Overview

Some of the tools on any hub are really a collection of 3-5 programs acting like a "workbench"
for a particular application. Berkeley Computational Nanoscience Class Tools is one such
example. It is really a collection of several separate Rappture-based applications, all running on
the same desktop, in the same tool session.

We've created a simple window manager called nanoWhim that makes it easy to switch back
and forth between several applications on a desktop--without all of the fuss and bother
associated with a typical window manager. A tool using nanoWhim looks like this:

The combobox at the top lets users switch between applications. Each window that pops up
within an application is managed by a set of tabs.

nanoWhim is based on the Whim window manager written in Tcl/Tk. We needed something like
this for nanoHUB to create a very simple tabbed interface, so users could easily switch between
a couple of tools within the same tool session. A more comprehensive workflow interface is
under development, but this simple solution is sometimes useful.

Flipping between tools

 14 / 31

http://www.nanohub.org/tools/ucb_compnano/
http://rappture.org
http://whim.linuxsys.net/site/0

TOOL DEVELOPERS

The following example shows a Rappture-based application that popped up a separate Jmol
application for molecular visualization. Jmol pops up in its own tab, and you can easily switch
back and forth between the original application and the Jmol popup by clicking on the tabs, as
shown below:

You can click on the x on the Jmol tab to close that application.

You can select another application by using the combobox at the very top of the window. That
brings up another Rappture-based application, with a different set of inputs and outputs.

 15 / 31

http://rappture.org
http://jmol.sourceforge.net/
http://rappture.org

TOOL DEVELOPERS

You can run each program independently, and the outputs stay separate. If you flip back to the
previous application, it will be sitting just the way you left it.

Configuring nanoWhim

To use nanoWhim, you'll need to create two files in the "middleware" directory for your tool:
nanowhimrc and invoke.

The nanowhimrc File

This file configures the various applications that pop up within the tool session. Here's a very
simple example:

set an icon
set.config controls_icon header.gif

first app is an xterm
start.app "Terminal Window" xterm

second app is a web browser
start.app "Web Browser" firefox

Any line that starts with a pound sign (#) is treated as a comment.

The set.config command configures various aspects of the window manager. Right now, the
only useful option is controls_icon, which sets the icon shown in the top-left corner of the
window. Note that a relative file name is interpreted with respect to the location of the
nanowhimrc file itself. In this case, we've assumed that the image header.gif is sitting in the
same directory as nanowhimrc.

The rest of the file contains a series of start.app commands for each application that you want
to offer. In this case, the first application is called "Terminal Window" and is just an xterm
application. The second application is the Firefox web browser, which we label "Web Browser".

Here's a more realistic example:

#
Customize the nanoWhim window manager
#
set.config controls_icon header.gif

 16 / 31

TOOL DEVELOPERS

start.app "Average"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/avg -p
 /apps/java/bin

start.app "Molecular Dynamics (Lennard-Jones)"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/ljmd -
p /apps/java/bin

start.app "Molecular Dynamics (LAMMPS)"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/lammps
 -p /apps/java/bin -p /apps/lammps/lammps-12Feb07/bin

start.app "Monte Carlo (Hard Sphere)"
 /apps/rappture/invoke_app -t ucb_compnano -T $dir/../rappture/hsmc -
p /apps/java/bin

start.app "Ising Simulations"
 /apps/java/bin/java -classpath $dir/../bin MonteCarlo

Each start.app command starts a different Rappture-based application. The first argument in
quotes is the title of the application, which is displayed in the combobox at the top of the
window. The remaining arguments are treated as the Unix command that is invoked to start the
application.

The commands shown here all use the /apps/rappture/invoke_app script to invoke a Rappture-
based application. The -t argument for that script indicates the project (tool) name. The -T
argument indicates which directory contains the Rappture tool.xml file. You can use $dir here to
locate the directory relative to the nanowhimrc file. Each -p argument adds a directory onto the
execution path (environment variable $PATH), which may be needed for simulators and other
tools invoked by the Rappture program.

The invoke File

The nanowhimrc file configures the window manager, but the middleware/invoke script actually
invokes it. Every tool on nanoHUB has its own invoke script sitting in the middleware directory.
Your invoke script should look like this if you want to use nanoWhim:

#!/bin/sh
/apps/nanowhim/invoke_app -t ucb_compnano

This script invokes the nanoWhim window manager for the project specified by the -t argument.

 17 / 31

TOOL DEVELOPERS

This is the short name that you gave when you registered your tool with nanoHUB. This script
looks for the middleware/nanowhimrc file within your source code, and launches nanoWhim with
that configuration.

Testing Your Tool

Normally, you develop and test tools within a workspace in your hub. If you're using nanoWhim,
that's still true for the individual applications. In other words, you can test each application
individually within a workspace. But to get the full effect of the nanoWhim manager running all
applications at once, you'll have to get your tool to "installed" status, and then launch the
application in test mode. For details about doing this, see the tool maintenance documentation
for hub managers or the lecture on Uploading and Publishing New Tools. Look at the tool status
page for your own tool project and find the Launch Tool button. This is what you would normally
do to test any tool before approving it. Once you're in the "installed" stage and you're able to
click Launch Tool, the nanoWhim configuration should take effect and you'll be able to test the
overall combined tool.

 18 / 31

/documentation/1.0.0/managers/maintenance.tools
/documentation/1.0.0/managers/maintenance.tools
/resources/173

TOOL DEVELOPERS

Accessing the Grid

Overview

Tools are hosted within a "tool session" running within the hub environment. The tool session
supports the graphical interface, which helps the user set up the problem and visualize results.
If the underlying calculation is fairly light weight (e.g., runs in a few minutes or less), then it can
run right within the same tool session. But if the job is more demanding, it can be shipped off to
another machine via the "submit" command, leaving the tool session host less taxed and more
responsive.

This chapter describes the "submit" command, showing how it can be used at the command line
within a workspace and also within Rappture-based tools.

 19 / 31

TOOL DEVELOPERS

Submit Command

Overview

submit takes a user command and executes it remotely. The objective is to allow the user to
issue a command in the same manner as a locally executed command. Multiple submission
mechanisms are available for job dissemination. A set of steps are executed for each job
submission:

Destination site is selected
A wrapper script is generated for remote execution
If needed a batch system description file is generated.
Input files for a job are gathered and transferred to the remote site. Transferred files
include the wrapper and batch description scripts.The wrapper script is executed remotely.
Progress of the remote job is monitored until completion.
Output files from the job are returned to the dissemination point.

Command Syntax

submit command options can be determined by using the help parameter of the submit
command.

$ submit --help
usage: submit [options]

options:
 -v, --venue Remote job destination
 -i, --inputfile Input file
 -n NCPUS, --nCpus=NCPUS
 Number of processors for MPI execution
 -N PPN, --ppn=PPN Number of processors/node for MPI execution
 -w WALLTIME, --wallTime=WALLTIME
 Estimated walltime hh:mm:ss or minutes
 -e, --env Variable=value
 -m, --manager Multiprocessor job manager
 -r NREDUNDANT, --redundancy=NREDUNDANT
 Number of indentical simulations to execute in
 parallel
 -M, --metrics Report resource usage on exit
 -W, --wait Wait for reduced job load before submission
 -h, --help Report command usage

Currently available DESTINATIONs are:
 clusterA

 20 / 31

TOOL DEVELOPERS

 clusterB

Currently available MANAGERs are:
 mpich-intel32

By specifying a suitable set of command line parameters it is possible to execute commands on
configured remote systems. The simple premise is that a typical command line can be prefaced
by submit and its arguments to execute the command remotely.

$ submit -v clusterA echo Hello world!
Hello world!

In this example the echo command is executed on the venue named clusterA where jobs are
executed directly on the host. Execution of the same command on a cluster using PBS would
be done in a similar fashion

$ submit -v clusterB echo Hello world!
(2586337) Simulation Queued Wed Oct 7 14:45:21 2009
(2586337) Simulation Done Wed Oct 7 14:54:36 2009
$ cat 00577296.stdout
Hello world!

submit supports an extensible variety of submission mechanisms. HUBzero supported
submission mechanisms are

local - use job submission mechanisms available directly on the submit host. These
include PBS and condor job submission.
ssh - direct use of ssh with pre-generated key.
ssh + remote batch job submission - use ssh to do batch job submission remotely, again
with pre-generated key.

A site for remote submission occurs is selected in one of the following ways, listed in order of
precedence:

User specified on the command line with -v/--venue option.
Randomly selected from remote sites associated pre-staged application.

 21 / 31

TOOL DEVELOPERS

Any files specified by the user plus internally generated scripts are packed into a tarball
for delivery to the remote site. Individual files or entire directory trees may be listed as
command inputs using the -i/--inputfile option. Additionally command arguments that
exist as files or directories will be packed into the tarball. If using ssh based submission
mechanisms the tarball is transferred using scp.

The job wrapper script is executed remotely either directly or as a batch job. The job is
subject to all remote queuing restrictions and idiosyncrasies.

Remote batch jobs are monitored for progress. Changes in job status are reported at
least every minute. Job status is reported at least every four minutes. The job status is
used to detect job completion.

The same methods used to transfer input files are applied in reverse to retrieve output
files. Any files and directories created or modified by the application are be retrieved. A
tarball is retrieved and expanded to the home base directory. It is up to the user to avoid
the overwriting of files.

In addition to the application generated output files additional files are generated in the
course of remote job execution. Some of these files are for internal bookkeeping and are
consumed by submit, a few files however remain in the home base directory. The
remaining files include JOBID.stdout and JOBID.stderr, it is also possible that a second
set of standard output/error files will exist containing the output from the batch job
submission script. JOBID represents unique job identifier assigned by submit.

 22 / 31

TOOL DEVELOPERS

Rappture Integration with Submit

Overview

It is possible to use the submit command to execute simulation jobs generated by Rappture
interfaces remotely. A common approach is to create a shell script which can exec'd or forked
from an application wrapper script. This approach has been applied to TCL, Python, Perl
wrapper scripts. To avoid consumption of large quantities of remote resources it is imperative
that the submit command be terminated when directed to do so by the application user (Abort
button).

TCL Wrapper Script

submit can be called from a TCL Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt. Setting execctl to 1 will
terminate the process and any child processes.

package require Rappture
Rappture::signal SIGHUP sHUP {
 puts "Caught SIGHUP"
 set execctl 1
}
Rappture::signal SIGTERM sTERM {
 puts "Caught SIGTERM"
 set execctl 1
}

A second code segment is used to build an executable script that can executed using
Rappture::exec. The trap statement will catch the interrupt thrown when the wrapper script
execution is Aborted. Putting the submit command in the background allows for the possibility of
issuing multiple submit commands from the script. The wait statement forces the shell script to
wait for all submit commands to terminate before exiting.

 set submitScript "#!/bin/sh\\n\\n"
 append submitScript "trap cleanup HUP INT QUIT ABRT TERM\\n\\n"
 append submitScript "cleanup()\\n"
 append submitScript "{\\n"
 append submitScript " kill -TERM `jobs -p`\\n"
 append submitScript " exit 1\\n"

 23 / 31

TOOL DEVELOPERS

 append submitScript "}\\n\\n"

 append submitScript "cd [pwd]\\n"
 append submitScript "submit -v cluster -n $nodes -w $walltime\\\\\\
n"
 append submitScript " COMMAND ARGUMENTS &\\n"
 append submitScript "sleep 5\\n"
 append submitScript "wait\\n"

 set submitScriptPath [file join [pwd] submit_script.sh]
 set fid [open $submitScriptPath w]
 puts $fid $submitScript
 close $fid
 file attributes $submitScriptPath -permissions 00755

The standard method for wrapper script execution of commands can now be used. This will
stream the output from all submit commands contained in submit_script.sh to the GUI display.
The same output will be retained in the variable out.

set status [catch {Rappture::exec $submitScriptPath} out]

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

 set out2 ""
 foreach errfile [glob -nocomplain *.stderr] {
 if [file size $errfile] {
 if {[catch {open $errfile r} fid] == 0} {
 set info [read $fid]
 close $fid
 append out2 $info
 }
 }
 file delete -force $errfile
 }
 foreach outfile [glob -nocomplain *.stdout] {
 if [file size $outfile] {
 if {[catch {open $outfile r} fid] == 0} {
 set info [read $fid]
 close $fid
 append out2 $info
 }
 }

 24 / 31

TOOL DEVELOPERS

 file delete -force $outfile
 }

The script file should be removed.

file delete -force $submitScriptPath

The output is presented as the job output log.

$driver put output.log $out2

All other result processing can proceed as normal.

Python Wrapper Script

submit can be called from a python Rappture wrapper script for remote batch job submission.
An example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt.

import os
import stat
import Rappture
import signal

def sig_handler(signalNumber, frame):
 if Rappture.tools.commandPid > 0:
 os.kill(Rappture.tools.commandPid,signal.SIGTERM)

signal.signal(signal.SIGINT, sig_handler)
signal.signal(signal.SIGHUP, sig_handler)
signal.signal(signal.SIGQUIT, sig_handler)
signal.signal(signal.SIGABRT, sig_handler)
signal.signal(signal.SIGTERM, sig_handler)

A second code segment is used to build an executable script that can executed using
Rappture.tools.getCommandOutput. The trap statement will catch the interrupt thrown when the
wrapper script execution is Aborted. Putting the submit command in the background allows for
the possibility of issuing multiple submit commands from the script. The wait statement forces

 25 / 31

TOOL DEVELOPERS

the shell script to wait for all submit commands to terminate before exiting.

 submitScriptName = 'submit_app.sh'
 submitScript = """#!/bin/sh

trap cleanup HUP INT QUIT ABRT TERM

cleanup()
{
 echo "Abnormal termination by signal"
 kill -s TERM `jobs -p`
 exit 1
}

"""
 submitScript += "cd %s\\\n" % (os.getcwd())
 submitScript += "submit -v cluster -n %s -w %s \\\\\\n" % (nodes,wa
lltime)
 submitScript += " %s %s &\\\n" % (COMMAND,ARGUMENTS)
 submitScript += "wait\\\n"

 submitScriptPath = os.path.join(os.getcwd(),submitScriptName)
 fp = open(submitScriptPath,'w')
 if fp:
 fp.write(submitScript)
 fp.close()

 os.chmod(submitScriptPath,
 stat.S_IRWXU|stat.S_IRGRP|stat.S_IXGRP|stat.S_IROTH|stat.S
_IXOTH)

The standard method for wrapper script execution of commands can now be used. This will
stream the output from all submit commands contained in submit_script.sh to the GUI display.
The same output will be retained in the variable stdOutput.

 exitStatus,stdOutput,stdError =
 Rappture.tools.getCommandOutput(submitScriptPath)

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

 re_stdout = re.compile(".*\.stdout$")
 re_stderr = re.compile(".*\.stderr$")

 26 / 31

TOOL DEVELOPERS

 out2 = ""
 errFiles = filter(re_stderr.search,os.listdir(os.getpwd()))
 if errFiles != []:
 for errFile in errFiles:
 errFilePath = os.path.join(os.getpwd(),errFile)
 if os.path.getsize(errFilePath) > 0:
 f = open(errFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stderror = ''.join(outFileLines)
 out2 += '\n' + stderror
 os.remove(errFilePath)

 outFiles = filter(re_stdout.search,os.listdir(os.getpwd()))
 if outFiles != []:
 for outFile in outFiles:
 outFilePath = os.path.join(os.getpwd(),outFile)
 if os.path.getsize(outFilePath) > 0:
 f = open(outFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stdoutput = ''.join(outFileLines)
 out2 += '\n' + stdoutput
 os.remove(outFilePath)

The script file should be removed.

 os.remove(submitScriptPath)

The output is presented as the job output log.

 lib.put("output.log", out2, append=1)

All other result processing can proceed as normal.

Perl Wrapper

submit can be called from a perl Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt.

 27 / 31

TOOL DEVELOPERS

use Rappture

my $ChildPID = 0;

sub trapSig {
 print "Signal @_ trapped\\n";
 if($ChildPID != 0) {
 kill 'TERM', $ChildPID;
 exit 1;
 }
}
$SIG{TERM} = \&trapSig;
$SIG{HUP} = \&trapSig;
$SIG{INT} = \&trapSig;

A second code segment is used to build an executable script that can executed using
Rappture.tools.getCommandOutput. The trap statement will catch the interrupt thrown when the
wrapper script execution is Aborted. The wait statement forces the shell script to wait for the
submit command to terminate before exiting.

$SCRPT = "submit_app.sh";
open(FID,">$SCRPT");
print FID "#!/bin/sh\\n";
print FID "\\n";
print FID "trap cleanup HUP INT QUIT ABRT TERM\\n\\n";
print FID "cleanup()\\n";
print FID "{\\n";
print FID " kill -s TERM `jobs -p`\\n";
print FID " exit 1\\n";
print FID "}\\n\\n";

print FID "submit -v cluster -n $nPROCS -w $wallTime COMMAND ARGUMENTS
 &\\n";
print FID "wait %1\\n";
print FID "exitStatus=\\$?\\n";
print FID "exit \\$exitStatus\\n";
close(FID);
chmod 0775, $SCRPT;

The standard fork and exec method for wrapper script execution of commands can now be
used. Using this approach does not allow streaming of the command outputs.

 28 / 31

TOOL DEVELOPERS

if (!defined($ChildPID = fork())) {
 die "cannot fork: $!";
} elsif ($ChildPID == 0) {
 exec("./$SCRPT") or die "cannot exec $SCRPT: $!";
 exit(0);
} else {
 waitpid($ChildPID,0);
}

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered with standard perl commands for file matching, reading,
etc. All other result processing can proceed as normal.

 29 / 31

TOOL DEVELOPERS

Passing parameters to tools

How to pass parameters to tool

How to pass parameters to tools This document proposes an updated method of passing
parameters to tools when invoking them. We used to do this another way. The intent of this
proposal is to make it work properly across all tools on all hubs. Step 1: A tool is launched with
various parameters as an argument a) Parameters are defined with a simple syntax that
captures the parameter type, an optional parameter name, and its value: directory(context):/tmp
file(input):/data/groups/testgroup/dropbox/input.txt file:/home/neeshub/mmclennan/.bashrc Each
parameter value has the form type(name):value, where type is either file or directory. We may
add other types as time goes on, but weâ€™ll never add something general like string. Itâ€™s far
too dangerous to let the application parse untrusted string values, so all types must be well-
defined and validated by the middleware. b) The tool invocation URL takes a params field value
with a newline-separated list of parameters. For example: https://nees.org/tools/indeed/invoke/c
urrent?params=directory%28context%29%3a%2ftmp%0a%0dfile%28input%29%3a%2fdata%2f
groups%2ftestgroup%2fdropbox%2finput.txt As you can see, the ()â€˜s, :â€˜s, and other
punctuation characters are encoded to the URL query notation. But the original text before the
encoding for this example was quite simple: directory(context):/tmp
file(input):/data/groups/testgroup/dropbox/input.txt Just like the original example, but only the
first two parameters. Note the separator characters %0a%0d in the URL. These are good, since
theyâ€™ll never conflict with other syntax and they mimic the syntax that we eventually get in the
parameter file. Step 2: The web server receives and validates the information The web server
examines the params field and parses the syntax for all elements. It scans through and
validates all elements, checking their type and value. For file and directory types, for example,
the given file path must reside in a white-listed set of known places, including the userâ€™s
home directory, the /data directory, the /scratch directory on NEES.org, etc. Files and directories
must also exist, so that a malicious hacker canâ€™t try to pass in shell commands in place of a
file. For file and directory types, the given file path must reside in a white-listed set of known
places. For NEES.org, the whitelist will include the /home and /nees directories. The web server
will also perform small translations on the params string, like collapsing and stripping extra
newlines. If a value is bad, or an argument type is not known, the web server should halt
processing and display an error. The web server will not check for the existence of the file or
directory because it does not have complete access to the directories and the intended use of
the parameter is unknown. Parameters could specify output file names, in which case the file
would not exist. File validation is is the responsibilitiy of the application. Step 3: The middleware
is told to start a session with the arguments The middleware already has an option for appopts.
Weâ€™ll leave that alone for backward compatibility and create a similar params option. The
params option will receive the URL-encoded params string from the web server. It will decode it
using â€˜urllib2.unquote(params).decode(â€œutf8â€•)â€™ and write it to a file called
parameters.hz in the userâ€™s session directory. It will also set an environment variable
TOOL_PARAMETERS=parameters.hz within the session indicating to the tool that parameter
file exists. Thatâ€™s all the middleware needs to do. No need to pass any parameters into the
invoke script. The tool (or perhaps the invoke_app wrapper) will take it from there. Step 4: The
tool is invoked. Many tools will use the new invoke_app script to look for arguments and pass
along appropriate arguments. For those like inDEED that may want to handle the arguments

 30 / 31

TOOL DEVELOPERS

themselves, they can. They would simply look for the $TOOL_PARAMETERS environment
variable. If set, it points to a file containing the sanitized tool arguments in the form shown
earlier: directory(context):/tmp file(input):/data/groups/testgroup/dropbox/input.txt
file:/home/neeshub/mmclennan/.bashrc The tool would then read this file and parse the various
lines to extract arguments.

Powered by TCPDF (www.tcpdf.org)

 31 / 31

http://www.tcpdf.org

