
PASSING PARAMETERS TO TOOLS

Passing parameters to tools

How to pass parameters to tool

How to pass parameters to tools This document proposes an updated method of passing
parameters to tools when invoking them. We used to do this another way. The intent of this
proposal is to make it work properly across all tools on all hubs. Step 1: A tool is launched with
various parameters as an argument a) Parameters are defined with a simple syntax that
captures the parameter type, an optional parameter name, and its value: directory(context):/tmp
file(input):/data/groups/testgroup/dropbox/input.txt file:/home/neeshub/mmclennan/.bashrc Each
parameter value has the form type(name):value, where type is either file or directory. We may
add other types as time goes on, but weâ€™ll never add something general like string. Itâ€™s far
too dangerous to let the application parse untrusted string values, so all types must be well-
defined and validated by the middleware. b) The tool invocation URL takes a params field value
with a newline-separated list of parameters. For example: https://nees.org/tools/indeed/invoke/c
urrent?params=directory%28context%29%3a%2ftmp%0a%0dfile%28input%29%3a%2fdata%2f
groups%2ftestgroup%2fdropbox%2finput.txt As you can see, the ()â€˜s, :â€˜s, and other
punctuation characters are encoded to the URL query notation. But the original text before the
encoding for this example was quite simple: directory(context):/tmp
file(input):/data/groups/testgroup/dropbox/input.txt Just like the original example, but only the
first two parameters. Note the separator characters %0a%0d in the URL. These are good, since
theyâ€™ll never conflict with other syntax and they mimic the syntax that we eventually get in the
parameter file. Step 2: The web server receives and validates the information The web server
examines the params field and parses the syntax for all elements. It scans through and
validates all elements, checking their type and value. For file and directory types, for example,
the given file path must reside in a white-listed set of known places, including the userâ€™s
home directory, the /data directory, the /scratch directory on NEES.org, etc. Files and directories
must also exist, so that a malicious hacker canâ€™t try to pass in shell commands in place of a
file. For file and directory types, the given file path must reside in a white-listed set of known
places. For NEES.org, the whitelist will include the /home and /nees directories. The web server
will also perform small translations on the params string, like collapsing and stripping extra
newlines. If a value is bad, or an argument type is not known, the web server should halt
processing and display an error. The web server will not check for the existence of the file or
directory because it does not have complete access to the directories and the intended use of
the parameter is unknown. Parameters could specify output file names, in which case the file
would not exist. File validation is is the responsibilitiy of the application. Step 3: The middleware
is told to start a session with the arguments The middleware already has an option for appopts.
Weâ€™ll leave that alone for backward compatibility and create a similar params option. The
params option will receive the URL-encoded params string from the web server. It will decode it
using â€˜urllib2.unquote(params).decode(â€œutf8â€•)â€™ and write it to a file called
parameters.hz in the userâ€™s session directory. It will also set an environment variable
TOOL_PARAMETERS=parameters.hz within the session indicating to the tool that parameter
file exists. Thatâ€™s all the middleware needs to do. No need to pass any parameters into the
invoke script. The tool (or perhaps the invoke_app wrapper) will take it from there. Step 4: The
tool is invoked. Many tools will use the new invoke_app script to look for arguments and pass
along appropriate arguments. For those like inDEED that may want to handle the arguments

 1 / 2

PASSING PARAMETERS TO TOOLS

themselves, they can. They would simply look for the $TOOL_PARAMETERS environment
variable. If set, it points to a file containing the sanitized tool arguments in the form shown
earlier: directory(context):/tmp file(input):/data/groups/testgroup/dropbox/input.txt
file:/home/neeshub/mmclennan/.bashrc The tool would then read this file and parse the various
lines to extract arguments.

Powered by TCPDF (www.tcpdf.org)

 2 / 2

http://www.tcpdf.org

