
ACCESSING THE GRID

Accessing the Grid

Overview

Tools are hosted within a "tool session" running within the hub environment. The tool session
supports the graphical interface, which helps the user set up the problem and visualize results.
If the underlying calculation is fairly light weight (e.g., runs in a few minutes or less), then it can
run right within the same tool session. But if the job is more demanding, it can be shipped off to
another machine via the "submit" command, leaving the tool session host less taxed and more
responsive.

This chapter describes the "submit" command, showing how it can be used at the command line
within a workspace and also within Rappture-based tools.

 1 / 11

ACCESSING THE GRID

Submit Command

Overview

submit takes a user command and executes it remotely. The objective is to allow the user to
issue a command in the same manner as a locally executed command. Multiple submission
mechanisms are available for job dissemination. A set of steps are executed for each job
submission:

Destination site is selected
A wrapper script is generated for remote execution
If needed a batch system description file is generated.
Input files for a job are gathered and transferred to the remote site. Transferred files
include the wrapper and batch description scripts.The wrapper script is executed remotely.
Progress of the remote job is monitored until completion.
Output files from the job are returned to the dissemination point.

Command Syntax

submit command options can be determined by using the help parameter of the submit
command.

$ submit --help
usage: submit [options]

options:
 -v, --venue Remote job destination
 -i, --inputfile Input file
 -n NCPUS, --nCpus=NCPUS
 Number of processors for MPI execution
 -N PPN, --ppn=PPN Number of processors/node for MPI execution
 -w WALLTIME, --wallTime=WALLTIME
 Estimated walltime hh:mm:ss or minutes
 -e, --env Variable=value
 -m, --manager Multiprocessor job manager
 -h, --help Report command usage

Currently available DESTINATIONs are:
 clusterA
 clusterB

Currently available MANAGERs are:
 mpich-intel32

 2 / 11

ACCESSING THE GRID

By specifying a suitable set of command line parameters it is possible to execute commands on
configured remote systems. The simple premise is that a typical command line can be prefaced
by submit and its arguments to execute the command remotely.

$ submit -v clusterA echo Hello world!
Hello world!

In this example the echo command is executed on the venue named clusterA where jobs are
executed directly on the host. Execution of the same command on a cluster using PBS would
be done in a similar fashion

$ submit -v clusterB echo Hello world!
(2586337) Simulation Queued Wed Oct 7 14:45:21 2009
(2586337) Simulation Done Wed Oct 7 14:54:36 2009
$ cat 00577296.stdout
Hello world!

submit supports an extensible variety of submission mechanisms. HUBzero supported
submission mechanisms are

local - use job submission mechanisms available directly on the submit host. These
include PBS and condor job submission.
ssh - direct use of ssh with pre-generated key.
ssh + remote batch job submission - use ssh to do batch job submission remotely, again
with pre-generated key.

A site for remote submission occurs is selected in one of the following ways, listed in order of
precedence:

User specified on the command line with -v/--venue option.
Randomly selected from remote sites associated pre-staged application.

Any files specified by the user plus internally generated scripts are packed into a tarball
for delivery to the remote site. Individual files or entire directory trees may be listed as
command inputs using the -i/--inputfile option. Additionally command arguments that

 3 / 11

ACCESSING THE GRID

exist as files or directories will be packed into the tarball. If using ssh based submission
mechanisms the tarball is transferred using scp.

The job wrapper script is executed remotely either directly or as a batch job. The job is
subject to all remote queuing restrictions and idiosyncrasies.

Remote batch jobs are monitored for progress. Changes in job status are reported at
least every minute. Job status is reported at least every four minutes. The job status is
used to detect job completion.

The same methods used to transfer input files are applied in reverse to retrieve output
files. Any files and directories created or modified by the application are be retrieved. A
tarball is retrieved and expanded to the home base directory. It is up to the user to avoid
the overwriting of files.

In addition to the application generated output files additional files are generated in the
course of remote job execution. Some of these files are for internal bookkeeping and are
consumed by submit, a few files however remain in the home base directory. The
remaining files include JOBID.stdout and JOBID.stderr, it is also possible that a second
set of standard output/error files will exist containing the output from the batch job
submission script. JOBID represents unique job identifier assigned by submit.

 4 / 11

ACCESSING THE GRID

Rappture Integration with Submit

Overview

It is possible to use the submit command to execute simulation jobs generated by Rappture
interfaces remotely. A common approach is to create a shell script which can exec'd or forked
from an application wrapper script. This approach has been applied to TCL, Python, Perl
wrapper scripts. To avoid consumption of large quantities of remote resources it is imperative
that the submit command be terminated when directed to do so by the application user (Abort
button).

TCL Wrapper Script

submit can be called from a TCL Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt. Setting execctl to 1 will
terminate the process and any child processes.

package require RapptureGUI
Rappture::signal SIGHUP sHUP {
 puts "Caught SIGHUP"
 set execctl 1
}

A second code segment is used to build an executable script that can executed using
Rappture::exec. The trap statement will catch the interrupt thrown when the wrapper script
execution is Aborted. Putting the submit command in the background allows for the possibility of
issuing multiple submit commands from the script. The wait statement forces the shell script to
wait for all submit commands to terminate before exiting.

 set submitScript "#!/bin/sh\n\n"
 append submitScript "trap cleanup HUP INT QUIT ABRT TERM\n\n"
 append submitScript "cleanup()\n"
 append submitScript "{\n"
 append submitScript " kill -TERM `jobs -p`\n"
 append submitScript " exit 1\n"
 append submitScript "}\n\n"

 append submitScript "cd [pwd]\n"
 append submitScript "submit -v cluster -n $nodes -w $walltime\\\n"

 5 / 11

ACCESSING THE GRID

 append submitScript " COMMAND ARGUMENTS &\n"
 append submitScript "sleep 5\n"
 append submitScript "wait\n"

 set submitScriptPath [file join [pwd] submit_script.sh]
 set fid [open $submitScriptPath w]
 puts $fid $submitScript
 close $fid
 file attributes $submitScriptPath -permissions 00755

The standard method for wrapper script execution of commands can now be used. This will
stream the output from all submit commands contained in submit_script.sh to the GUI display.
The same output will be retained in the variable out.

set status [catch {Rappture::exec $submitScriptPath} out]

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

 set out2 ""
 foreach errfile [glob -nocomplain *.stderr] {
 if [file size $errfile] {
 if {[catch {open $errfile r} fid] == 0} {
 set info [read $fid]
 close $fid
 append out2 $info
 }
 }
 file delete -force $errfile
 }
 foreach outfile [glob -nocomplain *.stdout] {
 if [file size $outfile] {
 if {[catch {open $outfile r} fid] == 0} {
 set info [read $fid]
 close $fid
 append out2 $info
 }
 }
 file delete -force $outfile
 }

The script file should be removed.

 6 / 11

ACCESSING THE GRID

file delete -force $submitScriptPath

The output is presented as the job output log.

$driver put output.log $out2

All other result processing can proceed as normal.

Python Wrapper Script

submit can be called from a python Rappture wrapper script for remote batch job submission.
An example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt.

import os
import stat
import Rappture
import signal

def sig_handler(signalNumber, frame):
 if Rappture.tools.commandPid > 0:
 os.kill(Rappture.tools.commandPid,signal.SIGTERM)

signal.signal(signal.SIGINT, sig_handler)
signal.signal(signal.SIGHUP, sig_handler)
signal.signal(signal.SIGQUIT, sig_handler)
signal.signal(signal.SIGABRT, sig_handler)
signal.signal(signal.SIGTERM, sig_handler)

A second code segment is used to build an executable script that can executed using
Rappture.tools.getCommandOutput. The trap statement will catch the interrupt thrown when the
wrapper script execution is Aborted. Putting the submit command in the background allows for
the possibility of issuing multiple submit commands from the script. The wait statement forces
the shell script to wait for all submit commands to terminate before exiting.

 submitScriptName = 'submit_app.sh'
 submitScript = """#!/bin/sh

trap cleanup HUP INT QUIT ABRT TERM

 7 / 11

ACCESSING THE GRID

cleanup()
{
 echo "Abnormal termination by signal"
 kill -s TERM `jobs -p`
 exit 1
}

"""
 submitScript += "cd %s\\\n" % (os.getcwd())
 submitScript += "submit -v cluster -n %s -w %s \\\n" % (nodes,wallt
ime)
 submitScript += " %s %s &\\\n" % (COMMAND,ARGUMENTS)
 submitScript += "wait\\\n"

 submitScriptPath = os.path.join(os.getcwd(),submitScriptName)
 fp = open(submitScriptPath,'w')
 if fp:
 fp.write(submitScript)
 fp.close()

 os.chmod(submitScriptPath,
 stat.S_IRWXU|stat.S_IRGRP|stat.S_IXGRP|stat.S_IROTH|stat.S
_IXOTH)

The standard method for wrapper script execution of commands can now be used. This will
stream the output from all submit commands contained in submit_script.sh to the GUI display.
The same output will be retained in the variable stdOutput.

 exitStatus,stdOutput,stdError =
 Rappture.tools.getCommandOutput(submitScriptPath)

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

 re_stdout = re.compile(".*\.stdout$")
 re_stderr = re.compile(".*\.stderr$")

 out2 = ""
 errFiles = filter(re_stderr.search,os.listdir(os.getpwd()))
 if errFiles != []:
 for errFile in errFiles:
 errFilePath = os.path.join(os.getpwd(),errFile)

 8 / 11

ACCESSING THE GRID

 if os.path.getsize(errFilePath) > 0:
 f = open(errFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stderror = ''.join(outFileLines)
 out2 += '\n' + stderror
 os.remove(errFilePath)

 outFiles = filter(re_stdout.search,os.listdir(os.getpwd()))
 if outFiles != []:
 for outFile in outFiles:
 outFilePath = os.path.join(os.getpwd(),outFile)
 if os.path.getsize(outFilePath) > 0:
 f = open(outFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stdoutput = ''.join(outFileLines)
 out2 += '\n' + stdoutput
 os.remove(outFilePath)

The script file should be removed.

 os.remove(submitScriptPath)

The output is presented as the job output log.

 lib.put("output.log", out2, append=1)

All other result processing can proceed as normal.

Perl Wrapper

submit can be called from a perl Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt.

use Rappture

my $ChildPID = 0;

sub trapSig {

 9 / 11

ACCESSING THE GRID

 print "Signal @_ trapped\n";
 if($ChildPID != 0) {
 kill 'TERM', $ChildPID;
 exit 1;
 }
}
$SIG{TERM} = \&trapSig;
$SIG{HUP} = \&trapSig;
$SIG{INT} = \&trapSig;

A second code segment is used to build an executable script that can executed using
Rappture.tools.getCommandOutput. The trap statement will catch the interrupt thrown when the
wrapper script execution is Aborted. The wait statement forces the shell script to wait for the
submit command to terminate before exiting.

$SCRPT = "submit_app.sh";
open(FID,">$SCRPT");
print FID "#!/bin/sh\n";
print FID "\n";
print FID "trap cleanup HUP INT QUIT ABRT TERM\n\n";
print FID "cleanup()\n";
print FID "{\n";
print FID " kill -s TERM `jobs -p`\n";
print FID " exit 1\n";
print FID "}\n\n";

print FID "submit -v cluster -n $nPROCS -w $wallTime COMMAND ARGUMENTS
 &\n";
print FID "wait %1\n";
print FID "exitStatus=\$?\n";
print FID "exit \$exitStatus\n";
close(FID);
chmod 0775, $SCRPT;

The standard fork and exec method for wrapper script execution of commands can now be
used. Using this approach does not allow streaming of the command outputs.

if (!defined($ChildPID = fork())) {
 die "cannot fork: $!";
} elsif ($ChildPID == 0) {
 exec("./$SCRPT") or die "cannot exec $SCRPT: $!";
 exit(0);

 10 / 11

ACCESSING THE GRID

} else {
 waitpid($ChildPID,0);
}

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered with standard perl commands for file matching, reading,
etc. All other result processing can proceed as normal.

Powered by TCPDF (www.tcpdf.org)

 11 / 11

http://www.tcpdf.org

