
SUBMIT COMMAND

Submit Command

Overview

submit takes a user command and executes it remotely. The objective is to allow the user to
issue a command in the same manner as a locally executed command. Multiple submission
mechanisms are available for job dissemination. A set of steps are executed for each job
submission:

Destination site is selected
A wrapper script is generated for remote execution
If needed a batch system description file is generated.
Input files for a job are gathered and transferred to the remote site. Transferred files
include the wrapper and batch description scripts.The wrapper script is executed remotely.
Progress of the remote job is monitored until completion.
Output files from the job are returned to the dissemination point.

Command Syntax

submit command options can be determined by using the help parameter of the submit
command.

$ submit --help
usage: submit [options]

options:
 -v, --venue Remote job destination
 -i, --inputfile Input file
 -n NCPUS, --nCpus=NCPUS
 Number of processors for MPI execution
 -N PPN, --ppn=PPN Number of processors/node for MPI execution
 -w WALLTIME, --wallTime=WALLTIME
 Estimated walltime hh:mm:ss or minutes
 -e, --env Variable=value
 -m, --manager Multiprocessor job manager
 -h, --help Report command usage

Currently available DESTINATIONs are:
 clusterA
 clusterB

Currently available MANAGERs are:
 mpich-intel32

 1 / 3

SUBMIT COMMAND

By specifying a suitable set of command line parameters it is possible to execute commands on
configured remote systems. The simple premise is that a typical command line can be prefaced
by submit and its arguments to execute the command remotely.

$ submit -v clusterA echo Hello world!
Hello world!

In this example the echo command is executed on the venue named clusterA where jobs are
executed directly on the host. Execution of the same command on a cluster using PBS would
be done in a similar fashion

$ submit -v clusterB echo Hello world!
(2586337) Simulation Queued Wed Oct 7 14:45:21 2009
(2586337) Simulation Done Wed Oct 7 14:54:36 2009
$ cat 00577296.stdout
Hello world!

submit supports an extensible variety of submission mechanisms. HUBzero supported
submission mechanisms are

local - use job submission mechanisms available directly on the submit host. These
include PBS and condor job submission.
ssh - direct use of ssh with pre-generated key.
ssh + remote batch job submission - use ssh to do batch job submission remotely, again
with pre-generated key.

A site for remote submission occurs is selected in one of the following ways, listed in order of
precedence:

User specified on the command line with -v/--venue option.
Randomly selected from remote sites associated pre-staged application.

Any files specified by the user plus internally generated scripts are packed into a tarball
for delivery to the remote site. Individual files or entire directory trees may be listed as
command inputs using the -i/--inputfile option. Additionally command arguments that

 2 / 3

SUBMIT COMMAND

exist as files or directories will be packed into the tarball. If using ssh based submission
mechanisms the tarball is transferred using scp.

The job wrapper script is executed remotely either directly or as a batch job. The job is
subject to all remote queuing restrictions and idiosyncrasies.

Remote batch jobs are monitored for progress. Changes in job status are reported at
least every minute. Job status is reported at least every four minutes. The job status is
used to detect job completion.

The same methods used to transfer input files are applied in reverse to retrieve output
files. Any files and directories created or modified by the application are be retrieved. A
tarball is retrieved and expanded to the home base directory. It is up to the user to avoid
the overwriting of files.

In addition to the application generated output files additional files are generated in the
course of remote job execution. Some of these files are for internal bookkeeping and are
consumed by submit, a few files however remain in the home base directory. The
remaining files include JOBID.stdout and JOBID.stderr, it is also possible that a second
set of standard output/error files will exist containing the output from the batch job
submission script. JOBID represents unique job identifier assigned by submit.

Powered by TCPDF (www.tcpdf.org)

 3 / 3

http://www.tcpdf.org

