
INSTALLATION

Installation

What is HUBzero?

HUBzero is a platform used to create dynamic web sites for scientific research and educational
activities. With HUBzero, you can easily publish your research software and related educational
materials on the web. Powerful middleware serves up interactive simulation and modeling tools
via your web browser. These tools can connect you with rendering farms and powerful Grid
computing resources.

Minimum System Requirements

HUBzero installations require one or more dedicated physical hosts running Debian GNU/Linux
5.0.

Other distributions might theoretically work with some modification, although they would be
totally unsupported.

A typical starter HUBzero installation might consist of a single physical server with dual 64-bit
quad-core CPUs, 16 Gigabytes of RAM and a terabyte of disk

It is possible to run HUBzero inside of a virtual machine such as ones created by VMware and
VirtualBox. While fully functional there will would significant performance and resource
limitations in such an environment.

Target Audience

This document and the installation of a HUBzero system has a target audience of experienced
Linux administrators (preferably experienced with Debian GNU/Linux).

 1 / 63

INSTALLATION

Debian GNU/Linux

Install Basic Operating System

The latest version of Debian GNU/Linux 5.0 (5.0.5 as of this writing) should be installed on each
physical host used by a HUBzero installation.

To install Debian GNU/Linux, you can easily obtain a copy, and then follow the installation
instructions for your architecture (only 64bit [AMD64] is currently supported).

Installing Debian GNU/Linux using a a small bootable CD is the simplest method.

When installing Debian GNU/Linux be sure to do the following:

Ensure the disk(s) are partitioned to have at least:
A bootable partition at least 100.0 GB in size for the root filesystem.
An empty partition at least 50.0 GB in size (note the device name of this partition
for later)
An appropriately sized swap partition.

When prompted to select an installation package just select "Standard System", other
packages will be added later

When the installation is complete your system will reboot into a minimal Debian GNU/Linux
system.

Don't forget to remove your installation media and/or change your server's boot media order if
you changed them prior to installation.

Set hostname

Optional. If you didn't specify the fully qualified domain name when running setup you will need
to set it here.

HUBzero expects the `hostname` command to return the fully qualified hostname for the
system.

hostname myhub.org

To make the change permanent you must also edit the file /etc/hostname, this can simply with:

echo "myhub.org" > /etc/hostname

 2 / 63

http://www.debian.org/
http://www.debian.org/distrib/
http://debian.org/releases/stable/installmanual
http://debian.org/releases/stable/installmanual
http://www.debian.org/distrib/netinst#smallcd

INSTALLATION

Delete local user

If you created a local user account when installing the operating system now would be a good
time to delete it before it causes you future problems.

deluser username

Configure Networking

Optional. If you didn't configure networking during installation you will need to do so now.

For help with networking setup try this link.

Setting up your IP address.

The IP addresses associated with any network cards you might have are read from the file
/etc/network/interfaces. This file has documentation you can read with:

man interfaces

A sample entry for a machine with a static address would look something like this:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
 address 192.168.1.90
 gateway 192.168.1.1
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255

Here we've setup the IP addresss, the default gateway, and the netmask.

 3 / 63

http://www.debian-administration.org/article/An_introduction_to_Debian_networking_setup

INSTALLATION

For a machine running DHCP the setup would look much simpler:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface - use DHCP to find our address
auto eth0
iface eth0 inet dhcp

(If you're using a DHCP based setup you must have a DHCP client package installed - usually
one of pump or dhcp-client.)

If you make changes to this file you can cause them to take effect by running:

/etc/init.d/networking restart

Setting up DNS

Use whatever nameserver and other options as recommended by your ISP. If you used DHCP
to set up networking it is likely this has already been set.

When it comes to DNS setup Debian doesn't differ from other distributions. To cause your
machine to consult with a particular server for name lookups you simply add their addresses to
/etc/resolv.conf.

For example a machine which should perform lookups from the DNS server at IP address
192.168.1.10 would have a resolv.conf file looking like this:

nameserver 192.168.1.10

Configure Advanced Package Tool

Now configure what debian distribution mirror to use and the location of the HUBzero package
repository by editing /etc/apt/sources.list to look like:

deb http://ftp.us.debian.org/debian/ lenny main
deb-src http://ftp.us.debian.org/debian/ lenny main

 4 / 63

INSTALLATION

deb http://security.debian.org/ lenny/updates main
deb-src http://security.debian.org/ lenny/updates main

deb http://volatile.debian.org/debian-volatile lenny/volatile main
deb-src http://volatile.debian.org/debian-volatile lenny/volatile main

deb http://packages.hubzero.org/deb lenny main contrib non-free
deb-src http://packages.hubzero.org/deb lenny main contrib non-free

You will need to get and install the hubzero archive key to be able to verify packages from the
hubzero archive:

wget http://packages.hubzero.org/deb/hubzero-signing-
key.asc -q -O - | apt-key add -

Once the public key for http://packages.hubzero.org has been install you can then upgrade the
current packages to their latest releases.

apt-get update
apt-get upgrade

SSH

Next we install fail2ban and ssh

apt-get install fail2ban ssh

At this point you can continue configuration and setup remotely if that is more convenient.

Enable OpenVZ

If you are installing this in a VirtualBox VM you must enable PAE/NX support. Go to system ->

 5 / 63

INSTALLATION

processor of your VM, select "Enable PAE/NX".

To use OpenVZ you must use an OpenVZ enabled kernel which is easily installed.

HUBzero makes extensive use of OpenVZ containers so it is recommended to just use the
OpenVZ enabled kernel on all HUBzero servers.

apt-get install linux-image-2.6-openvz-amd64

You will need to reboot the server to activate the new kernel.

reboot

Once you have rebooted you can verify the new kernel is active

uname -a
Linux myhub.hubzero.org 2.6.26-2-openvz-
amd64 #1 SMP Thu Nov 5 03:06:00 UTC 2009 x86_64 GNU/Linux

With the new kernel active you can remove the old one

apt-get purge linux-image-2.6.26-2-amd64

Prepare Fileystem

The root filesystem ('/') runs with quotas disabled and contains the primary operating system for
the server and for each OpenVZ container hosted on the server.

Each HUBzero server may use an addition partition for use appropriate to the function of the
server (web document root, project data, home directories, etc).

If you did not create an empty partition during setup, create one now using your favorite disk
partitioning tool. Be sure to note the device name for the partition you create as it will be used
below.

Once you have an empty partition ready we can install a filesystem. Replace "/dev/PART" with
the device name for the empty partition you have created (e.g., /dev/sda2). The command "fdisk
-l" will list all paritions the system knows about.

mke2fs -j /dev/PART
e2fsck -f -C 0 /dev/PART

 6 / 63

http://wiki.openvz.org/

INSTALLATION

mkdir /export

Then make sure the following line appears in /etc/fstab

/dev/PART /export ext3 defaults,quota,errors=remount-
ro 0 2

Then mount the new filesystem

mount /export

Bind mount /home

Create a 'home' directory in our new /export filesystem. move the contents of the default home
directory to the new location, then bind mount new location over the old.

mkdir -p /export/home/myhub
mv /home/* /export/home
mount --bind /export/home /home

Bind mount /opt

Currently HUBzero uses the /opt directory for storing subversion and trac data as well as some
of hubzero supporting software as well. We recognize this may not be the best organization.

Create a 'opt' directory in our new /export filesystem. move the contents of the default /opt
directory to the new location, then bind mount new location over the old.

mkdir /export/opt
mv /opt/* /export/opt
mount --bind /export/opt /opt

Bind mount /apps

 7 / 63

INSTALLATION

Currently HUBzero uses the /apps directory for storing installed tools and other software that
needs to be available to each execution container.

Create a 'apps' directory in our new /export filesystem and in the root filesystem. Then bind
mount /export/apps over /apps.

mkdir /export/apps
mkdir /apps
mount --bind /export/apps /apps

Bind mount /www

HUBzero uses the /www directory for storing the document root and supporting directories
needed by the web server.

Create a 'www' directory in our new /export filesystem and in the root filesystem. Then bind
mount /export/www over /www.

mkdir -p /export/www
mkdir /www
mount --bind /export/www /www

Update /etc/fstab

Now edit /etc/fstab with the bind mounts we created above by adding the following lines

/export/opt /opt none bind,defaults
0 0
/export/apps /apps none bind,defaults
0 0
/export/home /home none bind,defaults
0 0
/export/www /www none bind,defaults
0 0

 8 / 63

INSTALLATION

OpenLDAP

Install OpenLDAP

Install OpenLDAP

apt-get install slapd

You will be prompted for an administrative password. This will be the LDAP administrator
password and will be used anywhere that write permission to LDAP is required. This will get set
again in the next step when we reconfigure OpenLDAP.

Reconfigure OpenLDAP

Debian's default configuration for OpenLDAP is sometimes not quite what you might want. If
you want to use an LDAP base DN based off something other than the domain name used
when configuring the host you will need to reconfigure the package.

dpkg-reconfigure slapd

The reconfiguration script will allow you to change the LDAP base DN to be based on a different
domain name. For example, "myhub.org" would become "dc=myhub,dc=org".

The reconfiguration script will then ask for the organization to use. This isn't important to us and
can be set arbitrarily.

You will then be asked to enter a password for the admin account. You will need to remember
this password for later configuration steps.

Accept the default "HDB" database backend type.

Do not remove database when slapd is purged. Sometimes during maintenance it can be useful
to reinstall slapd without wiping out the database.

Move the old database out of the way.

Don't allow LDAPv2 protocol.

 9 / 63

INSTALLATION

Install nscd

The Name Service Cache (nscd) will used later so we go ahead and install it here.

apt-get install nscd

Install HUBzero LDAP Schema

apt-get install hubzero-openldap

To enable this new schema edit /etc/ldap/slapd.conf and add the following line as the last
"include" statue under the "Schema and objectClass definitions" comment toward the beginning
of the file.

include /etc/ldap/schema/hub.schema

Then restart OpenLDAP

/etc/init.d/slapd restart

Initialize OpenLDAP Database

Several entries are expected to be prepopulated in OpenLDAP.

There is a script to do this, but the script has to be manually configured.

cp /usr/lib/hubzero/openldap/HUB-INIT-SLAPD.tmpl HUB-INIT-SLAPD

Modify HUB-INIT-SLAPD and edit the five configuration lines near the beginning of the file:

base_dn=""
admin_pass=""
hubadmin_passhash=""
hubrepo_passhash=""
home_dir=""

base_dn should be the base DN of your LDAP (e.g., "dc=myhub,dc=org")

 10 / 63

INSTALLATION

admin_pass should be the clear text password you set for the LDAP administrator.
hubadmin_passhash should be the hashed password for the about to be created
hubadmin account. You can hash a password using '/usr/sbin/slappasswd'
hubrepo_passhash should be the hashed password for the about to be created
hubrepo account. You can hash a password using '/usr/sbin/slappasswd'
home_dir should be the home directoy you created earlier (eg., "/home/myhub").

Then run the configuration script

sh ./HUB-INIT-SLAPD

This should prepopulate the databae enough to bootstrap HUBzero.

Configure PAM to use LDAP

apt-get install libpam-ldap

Use "ldap://127.0.0.1" as the URI
Set the base DN to match how you configured OpenLDAP (eg., "dc=myhub,dc=org")
Use LDAP v3
Accept making local root data admin
LDAP does not require login
Specify the DN for the LDAP admin user (eg., "cn=admin,dc=myhub,dc=org")
Enter admin password for LDAP

Modify /etc/pam.d/common-auth by commenting out the existing configuration then adding
rules to allow authentication against LDAP.

#auth required pam_unix.so nullok_secure

auth sufficient pam_unix.so nullok_secure
auth sufficient pam_ldap.so try_first_pass
auth required pam_deny.so

Modify /etc/pam_ldap.conf by adding the following section (other mappings in this file should
already be commented out).

HUBzero Mappings
nss_base_passwd ou=users,?one
nss_base_shadow ou=users,?one?host=web
pam_filter host=web
pam_password crypt

 11 / 63

INSTALLATION

nss_map_attribute uniqueMember member
nss_base_group ou=groups,dc=myhub,dc=org?sub

Be sure the BASEDN in the above matches that used by your configuration.

/etc/pam_ldap.secret contains the LDAP admin password and should only be readable by root.

Configure NSS to use OpenLDAP

apt-get install libnss-ldap

Specify the DN for the ldap admin account
Specify the password for the ldap admin account

Modify /etc/libnss-ldap.conf by adding the following section. (other mappings in this file should
already be commented out).

HUBzero Mappings
nss_base_passwd ou=users,?one
nss_base_shadow ou=users,?one?host=web
pam_filter host=web
pam_password crypt
nss_map_attribute uniqueMember member
nss_base_group ou=groups,dc=myhub,dc=org?sub

Be sure the BASEDN in the above matches that used by your configuration.

Modify /etc/nsswitch.conf

passwd: compat ldap
group: compat ldap
shadow: compat ldap

/etc/libnss-ldap.secret contains the LDAP admin password and should only be readable by
root.

 12 / 63

INSTALLATION

Test

getent passwd

To test configuration. You should see entries for users 'hubrepo' and 'apps' toward the end of
the list if everything is working correctly.

Troubleshooting

If you have a problem with the system apparently not recognizing up to date account or group
information (eg., in the next section some people report receiving an error about unknown
username 'hubadmin') you can nscd to flush it data cache and restart using the following
commands:

nscd -i passwd
nscd -i group
/etc/init.d/nscd restart
getent passwd

If you still don't see the hubadmin account listed then re-read the instructions and check your
work very carefully. These instructions assume a fresh install, if you are working with an existing
LDAP/PAM/NSS installation you will have to do more advanced troubleshooting outside the
scope of this documentation.

Create home directories

Create a home directory for the apps user

mkdir /home/myhub/apps
chown apps.public /home/myhub/apps
chmod 0700 /home/myhub/apps

 13 / 63

INSTALLATION

MySQL

Install MySQL Server

Install MySQL Server

apt-get install hubzero-mysql

You will be prompted for an administrative password. This will be the MySQL administrator
password. This will also fix the GRANT permissions on the default Debian debian-sys-maint
mysql account.

 14 / 63

INSTALLATION

Apache

Install Apache Web Server

Install Apache Web Server

apt-get install hubzero-apache2

The default apache web site should now work and display "It Works!"

Enable default SSL site

a2ensite default-ssl
/etc/init.d/apache2 restart

The default apache ssl web site should now work (be sure to use https:// prefix) and display "It
Works!"

The SSL certficate used by the default-ssl and (see next sections) the hub-ssl sites use the self
signed "snakeoil" certificate that was installed by the ssl-cert package. This should only be used
for testing and development. A commercial certificate should be purchased and installed for any
site put into production.

Enable basic hub site

Enable the hub site, while disabling the apache default site.

a2dissite default
a2ensite hub
/etc/init.d/apache2 reload

This configuration continues to use the default apache document root so the site should display
the standard default "It Works!" page

 15 / 63

INSTALLATION

It would be a good idea to restrict access to the web server via a firewall now. A web based
installer will be installed later and it should only be accessed by the person setting up the site.

Enable basic hub SSL site

Enable the hub-ssl site, while disabling the default-ssl site.

a2dissite default-ssl
a2ensite hub-ssl
/etc/init.d/apache2 reload

This configuration continues to use the default apache document root so the https site should
display the standard default "It Works!" page

It would be a good idea to restrict access to the web server via a firewall now. A web based
installer will be installed later and it should only be accessed by the person setting up the site.

 16 / 63

INSTALLATION

PHP

Configure PHP

Edit /etc/php5/apache2/php.ini and set the display_errors parameter to 'Off' and log_errors to
"On".

display_errors = Off
log_errors = On

then restart apache to enable everything.

/etc/init.d/apache2 restart

Test

echo "<?php phpinfo();?>" > /var/www/index.php

Go to "/index.php" on your site and you should see a php status page.

Delete the test page when you are done.

rm /var/www/index.php

 17 / 63

INSTALLATION

Mail

Install

We need to reconfigure exim4 to enable outgoing email (exim4 got installed earlier as a
prerequisite for the mysql server).

dpkg-reconfigure exim4-config

Select "internet site; mail is sent and received directly using SMTP" then configure as
appropriate for your site.
Enter the FQDN of your site when asked
Listen on all IP addresses (i.e., make list blank)
Other destinations for which mail is accepted: should be made blank
Domains to relay mail for: should be made blank
Machines to relay mail for: should be made blank
Keep num,ber of DNS-queries minimal (Dial-on-Demand): No
Delivery method for local mail: mbox format in /var/mail/
Split configuration into small files? No

This is just an example. Mail should be configured however the site needs. The CMS just
expects to be able send outgoing email.

 18 / 63

INSTALLATION

CMS

Global HUBzero Configuration

Edit/create the file /etc/hubzero.conf

[default]
site=myhub

[myhub]
DocumentRoot=/www/myhub

Install

 Install the content management system.

apt-get install hubzero-cms
mkdir /www/myhub
cp -rp /usr/lib/hubzero/cms/* /www/myhub
chown -R www-data.www-data /www/myhub

Note: /www/myhub will be the document root of your site

Create Database

Create database for the HUBzero CMS to use

/usr/bin/mysql --defaults-file=/etc/mysql/debian.cnf
Welcome to the MySQL monitor. Commands end with ; or g.
Your MySQL connection id is 33
Server version: 5.0.51a-24+lenny2 (Debian)

Type 'help;' or 'h' for help. Type 'c' to clear the buffer.

mysql> CREATE DATABASE `myhub`;
Query OK, 1 row affected (0.00 sec)

mysql> CREATE DATABASE `myhub_metrics`;
Query OK, 1 row affected (0.00 sec)

 19 / 63

INSTALLATION

mysql> GRANT ALL PRIVILEGES ON `myhub`.* TO 'myhub
'@'%' IDENTIFIED BY 'xyzzy#1';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON `myhub_metrics`.* TO 'myhub
'@'%' IDENTIFIED BY 'xyzzy#1';
Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

mysql> quit

Configure Apache for CMS

We are now going to tell Apache about the change of document root of the web server.

Modify /etc/apache2/sites-available/hub AND /etc/apache2/sites-available/hub-ssl replacing
three instance of "/var/www" with "/www/myhub": follows

Change

 DocumentRoot /var/www
 ...
 <Directory /var/www>
 ...
 </Directory>
 ...
 <Directory /var/www/site/protected>
 ...
 </Directory>

to

 DocumentRoot /www/myhub
 ...
 <Directory /www/myhub>
 ...
 </Directory>
 ...

 20 / 63

INSTALLATION

 <Directory /www/myhub/site/protected>
 ...
 </Directory>

then restart apache

/etc/init.d/apache2 restart

Run CMS Installer

The Joomla/HUBzero installer will now appear on your website. Follow the instructions to get
the basic site configured. Then disable the installation directory.

You can ignore the LDAP configuration screen as it is currently not used.

Press the "Install HUBzero Sample Data" button to have a basic site layout made
[RECOMMENDED]

When you are done with the web installer you need to disable the web installation application:

rm -fr /www/myhub/installation

Configure CMS

Some of the initial site configuration still needs be done manually.

cp -p /www/myhub
/hubconfiguration.php-dist /www/myhub/hubconfiguration.php

Fill in the dozen or so parameters as needed and the core global site configuration is complete

<?php
class HubConfig {
 var $hubLDAPMasterHost = 'ldap://127.0.0.1';
 var $hubLDAPSlaveHosts = '';
 var $hubLDAPBaseDN = 'dc=myhub,dc=org';
 var $hubLDAPNegotiateTLS = '0';

 21 / 63

INSTALLATION

 var $hubLDAPSearchUserDN = '';
 var $hubLDAPSearchUserPW = '';
 var $hubLDAPAcctMgrDN = 'cn=admin,dc=myhub,dc=org';
 var $hubLDAPAcctMgrPW = 'test';
 var $ipDBDriver = 'mysql';
 var $ipDBHost = 'db.nanohub.org';
 var $ipDBPort = '';
 var $ipDBUsername = 'geodb';
 var $ipDBPassword = 'ge0dbhub';
 var $ipDBDatabase = 'network';
 var $ipDBPrefix = '';
 var $hubShortName = 'myhub';
 var $hubShortURL = 'myhub.org';
 var $hubLongURL = 'http://myhub.org';
 var $hubSupportEmail = 'real@email.address';
 var $hubMonitorEmail = 'real@email.address';
 var $hubHomeDir = '/home/myhub';
 var $forgeName = 'myFORGE';
 var $forgeURL = 'https://myhub.org';
 var $forgeRepoURL = 'http://myhub.org';
 var $svn_user = 'hubrepo';
 var $svn_password = 'test';
}
?>

Be sure to use a real email address in hubSupportEmail and hubMonitorEmail, failure to do so
will result in a failure of the hub to send out email properly.

 22 / 63

INSTALLATION

Subversion

Install Subversion

install --owner www-data --group www-
data --mode 0770 -d /opt/svn/tools
touch /etc/apache2/svn.conf /etc/apache2/svn.bak
chown www-data /etc/apache2/svn.conf /etc/apache2/svn.bak

The apache hub site configuration files are preconfigured to support this. Subversion
repositories are generated dynamically by the addrepo script (installed later) and are included
through the /etc/apache2/svn.conf file. URLs matching !^/tools/[^/]+/svn($|/) excluded from being
processed by the CMS and are instead directly handled by the Subversion Apache module.

Test

svnadmin create /opt/svn/tools/test --fs-type fsfs
chown -R www-data.www-data /opt/svn/tools/test
echo "<Location /tools/test/svn>
 DAV svn
 SVNPath /opt/svn/tools/test
 AuthType Basic
 AuthBasicProvider ldap
 AuthName "Test"
 AuthzLDAPAuthoritative on
 AuthLDAPGroupAttributeIsDN on
 AuthLDAPGroupAttribute owner
 AuthLDAPGroupAttribute member
 AuthLDAPURL ldap://localhost/ou=users,dc=myhub,dc=org
 Require ldap-group gid=apps,ou=groups,dc=myhub,dc=org
</Location>" > /etc/apache2/svn.conf
/etc/init.d/apache2 restart

Be sure to the BASEDN in the above to match that used by your configuration.

Now browse to "/tools/test/svn" using an https connection and you should get prompted for a
username and password, use the apps account you created earlier when you installed LDAP.
You should see "svn - Revision 0: /".

 23 / 63

INSTALLATION

Delete test file.

echo "" > /etc/apache2/svn.conf
rm -fr /opt/svn/tools/test
/etc/init.d/apache2 restart

 24 / 63

INSTALLATION

WebDAV

Configure WebDAV

The apache hub site configuration files are preconfigured to support this. Update the LDAP
configuration to match the BASEDN of your site:

Edit /etc/apache2/sites-available/hub-ssl

 <Directory /webdav>
 ...

AuthLDAPURL ldap://localhost/ou=users,dc=myhub,dc=org?uid
 ...
 </Directory>

This enables webDAV for the /webdav directory space, rewriting the url to always be under the
user's directory. The 'usermap' tool (see next section) is used to map files from the user's home
directory into the /webdav space (and mapping ownership to www-data).

Then restart the apache webserver to enable your changes.

/etc/init.d/apache2 restart

Test

install --owner www-data --group www-
data --mode 0770 -d /webdav/home/apps
touch /webdav/home/apps/test

Browse to your site's https /webdav address (e.g. https://myhub/webdav). You should get
prompted for a username and password. Use the apps account. You should see a directory
listing including the file "test".

Now test using a WebDAV client.

apt-get install cadaver

 25 / 63

INSTALLATION

cadaver https://myhub.org/webdav

You will be prompted to accept self signed certificate (if it is still installed) and then to enter your
username and password. Use the 'apps' account again to test. When you get the
"dav:/webdav/>" prompt just enter "ls" and it should show the test file.

Finally clean up test case

apt-get purge cadaver
rm /webdav/home/apps/test
rmdir /webdav/home/apps /webdav/home /webdav

 26 / 63

INSTALLATION

Usermap

Install usermap

Install the WebDAV Usermap Filesystem

apt-get install hubzero-usermap

Configure Usermap

apt-get install autofs

Edit /etc/auto.master by adding the following line

/webdav/home /etc/auto.webdav --timeout=60

Edit/create /etc/auto.webdav so that it has the following content

* -fstype=usermap,user=www-data,allow_other :&

/etc/init.d/autofs restart

Add fuse to the /etc/modules file so that it is loaded on startup.

This automounts a usermap filesystem of a users home directory inside of /webdav/home on
demand. This version of the users home directory is owned and accessible to the user www-
data which allows WebDAV to serve its contents.

Test

touch /home/myhub/apps/test
ls -l /webdav/home/apps

 27 / 63

INSTALLATION

 You should see a list of files in apps's home directory ("test") which will appear to be owned by
www-data.www-data

mount -l

You should see something like:
mount.usermap on /webdav/home/apps type fuse.mount.usermap
(rw,nosuid,nodev,allow_other)

Finally clean up.

umount -f /webdav/home/apps
rm /webdav/home/apps/test

Troubleshooting

If the test doesn't work, check if the fuse kernel module is loaded

lsmod | grep fuse
fuse 54176 0

If there is no output then try starting the kernel module manually

modprobe fuse

Then try the test again

 28 / 63

INSTALLATION

Trac

Configure Apache for Trac

install --owner www-data --group www-
data --mode 0770 -d /opt/trac/tools

The apache hub site configuration files are preconfigured to support this. Update the LDAP
configuration to match the BASEDN of your site:

Edit /etc/apache2/sites-available/hub-ssl

 <LocationMatch /tools/[^/]+/login>
 ...

AuthLDAPURL ldap://localhost/ou=users,dc=myhub,dc=org?uid?sub?(gid=*)
 ...
 </LocationMatch>

Then restart apache

/etc/init.d/apache2 restart

Install Authentication Plugin

apt-get install hubzero-trac-mysqlauthz
/etc/init.d/apache2 restart

Test

svnadmin create /opt/svn/tools/test --fs-type fsfs
chown -R www-data.www-data /opt/svn/tools/test
trac-admin /opt/trac/tools/test initenv "Test" "sqlite:db/trac.db" "
svn" "/opt/svn/tools/test"
chown -R www-data.www-data /opt/trac/tools/test

 29 / 63

INSTALLATION

Now browse to "/tools/test/wiki" using an https connection; you should see a default Trac project
page.

Delete test data.

rm -fr /opt/svn/tools/test
rm -fr /opt/trac/tools/test
/etc/init.d/apache2 restart

 30 / 63

INSTALLATION

addrepo

Install

Install addrepo

apt-get install hubzero-addrepo

Configure

The web process needs to be able to run a number of scripts as the "apps" user. To do this it is
necessary to configure sudo to allow this:

Edit /etc/sudoers and add the following lines

www-
data ALL=(apps)NOPASSW
D:/bin/bash /www/myhub/components/com_contribtool/scripts/*tool.php *
www-
data ALL=(apps)N
OPASSWD:/usr/bin/expect /www/myhub
/components/com_contribtool/scripts/*tool.php *
www-data ALL=NOPASSWD:/etc/init.d/apache2

Be sure to replace "/www/myhub" with the document root you are using for your hub.

 31 / 63

INSTALLATION

iptables

iptables

apt-get install hubzero-mw-firewall

HUBzero requires the use of iptables to route network connections between application
sessions and the external network. The scripts controlling this can also be used to manage
basic firewall operations for the site. If you use manage iptables with other tools you will have to
make sure the rules in these scripts are maintained. /etc/mw/firewall_on and /etc/mw/firewall_off
turn the HUBzero firewall on and off respectively. A link from /etc/rc.boot/firewall_on to
/etc/mw/firewall_on causes the script to run at startup (this link was created for you). The basic
scripts installed here block all access to the host except for those ports required by HUBzero
(http,https,http-alt,ldap,ssh.smtp,mysql,submit,etc).

 32 / 63

INSTALLATION

Maxwell Service

Install

apt-get install hubzero-mw-service

Configure

/usr/lib/mw/bin/mkvztemplate amd64 lenny

Test

/usr/lib/mw/bin/maxwell_service startvnc 1 800x600 24

Enter an 8 character password when prompted (e.g., "testtest")

This should result in a newly create OpenVZ session with an instance of a VNC server running
inside of it. The output of the above command should look something like:

Reading passphrase:
testtest
===================== begin /etc/vz/conf/hub-
session-5.0-amd64.umount =========================

Removing /var/lib/vz/root/1 :root etc var tmp dev/shm dev
===================== end /etc/vz/conf/hub-
session-5.0-amd64.umount ==========================
stunnel already running
Starting VE ...
===================== begin /etc/vz/conf/1.mount =====================
=====
Removing and repopulating: root etc var tmp dev
Mounting: /var/lib/vz/template/debian-5.0-amd64-maxwell home apps
===================== end /etc/vz/conf/1.mount =======================
=====
VE is mounted
Setting CPU units: 1000
Configure meminfo: 2000000

 33 / 63

INSTALLATION

VE start in progress...
TIME: 0 seconds.
Waiting for container to finish booting.
/usr/lib/mw/startxvnc: Becoming nobody.
/usr/lib/mw/startxvnc: Waiting for 8-byte vncpasswd and EOF.
1+0 records in
1+0 records out
8 bytes (8 B) copied, 3.5333e-05 s, 226 kB/s
Got the vncpasswd
Adding auth for 10.51.0.1:0 and 10.51.0.1/unix:0
xauth: creating new authority file Xauthority-10.51.0.1:0
Adding IP address(es): 10.51.0.1
if-up.d/mountnfs[venet0]: waiting for interface venet0:0 before doing
NFS mounts (warning).
WARNING: Settings were not saved and will be resetted to original valu
es on next start (use --save flag)

vzlist
 VEID NPROC STATUS IP_ADDR HOSTNAME

 1 6 running 10.51.0.1 -

openssl s_client -connect localhost:4001

This should report an SSL connection with a self signed certificate and output text should end
with:

RFB 003.008

If you see this then you successfully connected to the VNC server running inside the newly
created OpenVZ session.

Clean up

 34 / 63

INSTALLATION

/usr/lib/mw/bin/maxwell_service stopvnc 1

Which should give output similar to:

Killing 6 processes in veid 1 with signal 1
Killing 7 processes in veid 1 with signal 2
Killing 5 processes in veid 1 with signal 15
Got signal 9
Stopping VE ...
VE was stopped
===================== begin /etc/vz/conf/1.umount ====================
=====
Unmounting /var/lib/vz/root/1/usr
Unmounting /var/lib/vz/root/1/home
Unmounting /var/lib/vz/root/1/apps
Unmounting /var/lib/vz/root/1/.root

Removing /var/lib/vz/root/1 :root etc var tmp dev/shm dev
Removing /var/lib/vz/private/1: apps bin emul home lib lib32 lib64 mnt
 opt proc sbin sys usr .root
===================== end /etc/vz/conf/1.umount ======================
====
VE is unmounted

 35 / 63

INSTALLATION

Maxwell Client

Install

apt-get install hubzero-mw-client

Configure

Configure SSH to allow maxwell keyed clients to connect as root by copying the contents of
/etc/mw/maxwell.key.pub into /root/.ssh/authorized_keys. This allows the maxwell client to run
the maxwell service as root.

mkdir -p /root/.ssh
cat /etc/mw/maxwell.key.pub >> /root/.ssh/authorized_keys

Copy the sample maxwell.conf file

cp /usr/lib/mw/maxwell.conf-dist /etc/mw/maxwell.conf

Edit /etc/mw/maxwell.conf

mysql_host = "localhost"
mysql_user="myhub"
mysql_password="xyzzy#1"
mysql_db="myhub"

default_vnc_timeout=86400
session_suffix="L"

filexfe
r_decoration="
""filexfer_sitelogo { <h1><a
 href="http://myhub.org/" title="myHUB
 home page">myhub.org
: online simulations and more</h1> }
filexfer_stylesheet http://myhub.org/templates/filexfer/upload.css"
"""

 36 / 63

INSTALLATION

hub_name="myhub"
hub_url="http://myhub.org/"
hub_homedir="/home/myhub"
hub_template="hubbasic"

Test

su www-data
$ ssh -i /etc/mw/maxwell.key root@localhost ls
The authenticity of host 'localhost (127.0.0.1)' can't be established.
RSA key fingerprint is e5:3c:7d:41:71:0b:0f:2a:0c:0e:bb:15:4d:e7:2f:08
.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (RSA) to the list of known host
s.
list of files
$ exit
#

 37 / 63

INSTALLATION

VNC Client

Install

apt-get install tightvnc-java

To confirm you have the correct version installed:

dpkg --list | grep tightvnc-java
ii tightvnc-java 1.3.8-0+hubzero3
 TightVNC java applet and command line progra

You should see a "+hubzeroXX" suffix on the version, where XX is some number. This version
includes SSL connection support and extra support for resizing the VNC session and a simple
client action protocol used by the HUBzero VNC server.

If the wrong version is installed be sure you have added the hubzero package repository to you
APT configuration. You may need to run "apt-get update" to get an up to date index of hubzero
packages. After updating try installing tightvnc-java again.

 38 / 63

INSTALLATION

vncproxy

Install

apt-get install hubzero-mw-vncproxy

 39 / 63

INSTALLATION

expire

Install

apt-get install hubzero-mw-expire

 40 / 63

INSTALLATION

telequotad

install

apt-get install hubzero-mw-telequotad

 41 / 63

INSTALLATION

App Container

Install

Apps (tools) on HUBzero run inside a Session Container. This is container's filesystem is rooted
at /var/lib/vz/template/debian-5.0-amd64-maxwell. To install debian packages into the session
container you must use chroot to root your filesystem on the Session Containers. Here we do
this and install a number of Session Container related packages.

chroot /var/lib/vz/template/debian-5.0-amd64-maxwell
apt-get update
apt-get upgrade
apt-get install icewm
apt-get install hubzero-icewm-config
apt-get install hubzero-icewm-themes
apt-get install hubzero-use

We use a modified version of icewm, to confirm you have the correct version got installed:

dpkg --list | grep icewm
ii icewm 1.2.35-1+hubzero1
 wonderful Win95-OS/2-Motif-like window manag
ii icewm-common 1.2.35-1+hubzero1
 wonderful Win95-OS/2-Motif-like window manag

You should see a "+hubzeroXX" suffix on the version, where XX is some number. This version
fixes a bug when resizing the display when using vnc4server.

This fix should get applied to the upstream package someday, in which case we will be able to
remove this version of the package and use version from the Debian Linux distribution.

Be sure to exit the chroot environment when you are done:

exit

Configure

 42 / 63

INSTALLATION

Users in the apps group can be granted permission to manage HUBzero Apps by placing them
in the 'apps' group. This permission is granted through the sudo, and is configured by adding
the following lines to /etc/sudoers:

%apps ALL=NOPASSWD:/bin/su - apps

 43 / 63

INSTALLATION

Workspace

Install

apt-get install hubzero-app
apt-get install hubzero-app-workspace
hubzero-app setup
hubzero-
app install --publish /usr/lib/hubzero/apps/workspace-1.0.hza

Configure

Go to the administrative web interface and select the Tools component

Click the on the parameters button and fill in values for host,username,password and database
for the apps database. In the hub-in-a-box configuration these are the same values as the main
HUBzero database.

Test

You should then be able to log in to the site and see the "Workspace" tool in the tool list and
launch it in your browser.

 44 / 63

INSTALLATION

Initialization

Setting Component Parameters

 45 / 63

INSTALLATION

Rappture

Install

The Rappture application is install in the apps directory along with proper links.

apt-get install hubzero-rappture

Session Installation

Rappture is used from inside a container and needs several other packages installed to allow
use of all its features. This process has been simplified by using the hubzero-rappture-session
with only contains the dependencies needed to pull in these other packages.

chroot /var/lib/vz/template/debian-5.0-amd64-maxwell
apt-get update
apt-get upgrade
apt-get install hubzero-rappture-session

This is also a good time to add some default paths to your session environment so that it
doesn't need to be whenever someone logs in. Modify the /etc/profile file as follows:

Change

if ["`id -u`" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
else
 PATH="/usr/local/bin:/usr/bin:/bin:/usr/games"
fi

To

if ["`id -u`" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
else
 PATH="/apps/rappture/bin:/apps/bin:
/usr/local/bin:/usr/bin:/bin:/usr/games"

 46 / 63

INSTALLATION

fi

Be sure to exit the chroot environment when you are done:

exit

A workspace may need to be opened and closed a few times before the changes to the session
template appear in a workspace.

Test

Rappture comes with several demostration scripts that can effectively test many parts of the
package. These demonstrations must be copied to a user's home directory within a workspace
before running.

$ mkdir examples
$ cp -r /apps/rappture/examples/* examples/.
$ cd examples
$./demo.bash

A window should open on the workspace showing that part of the demonstration. Close that
window to see the next demonstration. Some demonstrations may need something inputted to
work properly (such as the graphing calculator).

 47 / 63

INSTALLATION

filexfer

Install filexfer

Install the filexfer package

apt-get install hubzero-filexfer

Configure Apache for filexfer

Modify the hub site file at /etc/apache2/sites-available/hub-ssl

The apache hub site configuration files are not preconfigured to support this. Add the two
highlighted lines as shown below. Note that the relative placement of these lines is important.

Edit /etc/apache2/sites-available/hub-ssl

<VirtualHost *:443>
 RewriteEngine on
 RewriteMap xlate prg:/usr/lib/mw/bin/filexfer-
xlate
 ...
 ...
 ...
 <Directory /www/myhub>
 Options FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all

 RewriteEngine On

RewriteRule ^filexfer/(.*) ${xlate:$1|nothing} [P,QSA,L]

Then restart apache

/etc/init.d/apache2 restart

 48 / 63

INSTALLATION

Submit

Introduction

The submit command provides a means for HUB end users to execute applications on remote
resources. The end user is not required to have knowledge of remote job submission
mechanics. Jobs can be submitted to traditional queued batch systems including PBS and
Condor.

Installation

apt-get install hubzero-app-submit
apt-get install hubzero-submit-server
apt-get install hubzero-submit-distributor

Local Configuration

The behavior of submit is controlled through a set of configuration files. There are separate files
for defining remote sites, staged tools, multiprocessor managers, legal environment variables,
remote job monitors, and ssh tunneling.

Sites

Remote sites are defined in the file sites.dat. Each remote site is defined by a stanza indicating
an access mechanism and other account and venue specific information. Defined keywords are

[name] - site name. Used as command line argument (-v/--venue) and in tool.dat
(destinations)
venues - comma separated list of hostnames. If multiple hostnames are listed one site
will chosen at random.
tunnelDesignator - name of tunnel defined in tunnels.dat.
siteMonitorDesignator - name of site monitor defined in monitors.dat.
venueMechanism - possible mechanisms are ssh and local.
remoteUser - login user at remote site.
remoteBatchSystem - the possible batch submission systems include CONDOR, PBS,
and LSF. SCRIPT may also be specified to specify that a script will be executed directly
on the remote host.
remoteBatchQueue - when remoteBatchSystem is PBS the queue name may be
specified.
remoteBatchPartition - slurm parameter to define partition for remote job
remoteBatchPartitionSize - slurm parameter to define partition size, currently for BG
machines.

 49 / 63

INSTALLATION

remoteBatchConstraints - slurm parameter to define constraints for remote job
remoteBinDirectory - define directory where shell scripts related to the site should be
kept.
remoteScratchDirectory - define the top level directory where jobs should be executed.
Each job will create a subdirectory under remoteScratchDirectory to isolated jobs from
each other.
remotePpn - set the number of processors (cores) per node. The PPN is applied to PBS
and LSF job description files. The user may override the value defined here from the
command line.
remoteManager - site specific multi-processor manager. Refers to definition in
managers.dat.
remoteHostAttribute - define host attributes. Attributes are applied to PBS description
files.
stageFiles - A True/False value indicating whether or not files should be staged to
remote site. If the the job submission host and remote host share a file system file
staging may not be necessary. Default is True.
passUseEnvironment - A True/False value indicating whether or not the HUB 'use'
environment should passed to the remote site. Default is False. True only makes sense
if the remote site is within the HUB domain.
arbitraryExecutableAllowed - A True/False value indicating whether or not execution of
arbitrary scripts or binaries are allowed on the remote site. Default is True. If set to False
the executable must be staged or emanate from /apps.
members - a list of site names. Providing a member list gives a layer of abstraction
between the user facing name and a remote destination. If multiple members are listed
one will be randomly selected for each job.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.
failoverSite - specify a backup site if site is not available. Site availability is determined
by site probes.
checkProbeResult - A True/False value indicating whether or not probe results should
determine site availability. Default is True.
restrictedToUsers - comma separated list of user names. If the list is empty all users
may garner site access. User restrictions are applied before group restrictions.
restrictedToGroups - comma separated list of group names. If the list is empty all groups
may garner site access.
logUserRemotely - maintain log on remote site mapping HUB id, user to remote batch
job id. If not explicitly set the default value is False.

An example stanza is presented for a site that is accessed through ssh.

[cluster]
venues = cluster.university.edu
remotePpn = 8
remoteBatchSystem = PBS
remoteBatchQueue = standby
remoteUser = HUBuser

 50 / 63

INSTALLATION

remoteManager = mpich-intel64
venueMechanism = ssh
remoteScratchDirectory = /scratch/HUBuser
siteMonitorDesignator = cluster

Tools

Staged tools are defined in the file tools.dat. Each staged tool is defined by a stanza indicating
an where a tool is staged and any access restrictions. The existence of a staged tool at multiple
sites can be expressed with multiple stanzas or multiple destinations within a single stanza. If
the tool requires multiprocessors a manager can also be indicated. Defined keywords are

[name] - tool name. Used as command line argument to execute staged tools. Repeats
are permitted to indicate staging at multiple sites.
destinations - comma separated list of destinations.
executablePath - path to executable at remote site.
restrictedToUsers - comma separated list of user names. If the list is empty all users
may garner tool access. User restrictions are applied before group restrictions.
restrictedToGroups - comma separated list of group names. If the list is empty all groups
may garner tool access.
remoteManager - tool specific multi-processor manager. Refers to definition in
managers.dat. Overrides value set by site definition.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a staged tool maintained in the HUBuser account on a
remote site.

[simulator]
destinations = cluster
executablePath = ${HOME}/apps/simulator/bin/simulator.ex
remoteManager = mpi

Multi-processor managers

Multiprocessor managers are defined in the file managers.dat. Each manager is defined by a
stanza indicating the set of commands used to execute a multiprocessor simulation run. Defined
keywords are

[name] - manager name. Used in sites.dat and tools.dat.
computationMode - indicate how to use multiple processors for a single job. Recognized

 51 / 63

INSTALLATION

values are mpi, parallel, and matlabmpi. Parallel application request multiprocess have
there own mechanism for inter process communication. Matlabmpi is used to enable the
an Matlab implementation of MPI.
preManagerCommands - comma separated list of commands to be executed before the
manager command. Typical use of pre manager commands would be to define the
environment to include a particular version of MPI amd/or compiler, or setup MPD.
managerCommand - manager command commonly mpirun. It is possible to include
strings that will be sustituted with values defined from the command line.
postManagerCommands - comma separated list of commands to be executed when the
manager command completes. A typical use would be to terminate an MPD setup.
mpiRankVariable - define environment variable set by manager command to define
process rank. Recognized values are: MPIRUN_RANK, GMPI_ID, RMS_RANK,
MXMPI_ID, MSTI_RANK, PMI_RANK, and OMPI_MCA_ns_nds_vpid. If no variable is
given an attempt is made to determine process rank from command line arguments.
environment - comma separated list of environment variables in the form e=v.
moduleInitialize - initialize module script for sh
modulesUnload - modules to be unloaded clearing way for replacement modules
modulesLoad - modules to load to define mpi and other libraries

An example stanza is presented for a typical MPI instance.

[mpich-intel32]
preManagerCommands = . ${MODULESHOME}/init/sh, module load mpich-
intel32
managerCommand = mpirun -machinefile ${PBS_NODEFILE} -np NPROCESSORS

The token NPROCESSORS is replaced by an actual value at runtime.

Environment variables

Legal environment variables are listed in the file environmentwhitelist.dat. The objective is to
prevent end users from setting security sensitive environment variables while allowing
application specific variables to be passed to the remote site. Environment variables required to
define multiprocessor execution should also be included. The permissible environment variables
should be entered as a simple list - one entry per line. An example file allowing use of a variable
used by openmp is

environment variables listed here can be specified from the command
line with -e/--env option.

OMP_NUM_THREADS

 52 / 63

INSTALLATION

Monitors

Remote job monitors are defined in the file monitors.dat. Each remote monitor is defined by a
stanza indicating where the monitor is located and to be executed. Defined keywords are

[name] - monitor name. Used in sites.dat (siteMonitorDesignator)
venue - hostname upon which to launch monitor daemon. Typically this is a cluster
headnode.
tunnelDesignator - name of tunnel defined in tunnels.dat.
remoteUser - login user at remote site.
remoteMonitorCommand - command to launch monitor daemon process.

An example stanza is presented for a remote monitor tool used to report status of PBS jobs.

[cluster]
venue = cluster.university.edu
remoteUser = HUBuser
remoteMonitorCommand = ${HOME}/SubmitMonitor/monitorPBS.py

Tunnels

In some circumstances access to clusters is restricted such that only a select list of machines is
allowed to communicate with the cluster job submission node. The machines that are granted
such access are sometimes referred to as gateways. In such circumstances ssh tunneling or
port forwarding can be used to submit HUB jobs through the gateway machine. Tunnel
definition is specified in the file tunnels.dat. Each tunnel is defined by a stanza indicating
gateway host and port information. Defined keywords are

[name] - tunnel name.
venue - tunnel target host.
venuePort - tunnel target port.
gatewayHost - name of the intermediate host.
gatewayUser - login user on gatewayHost.
localPortOffset - local port offset used for forwarding. Actual port is localPortMinimum +
localPortOffset

An example stanza is presented for a tunnel between the HUB and a remote venue by way of
an accepted gateway host.

[cluster]
venue = cluster.university.edu
venuePort = 22
gatewayHost = gateway.university.edu

 53 / 63

INSTALLATION

gatewayUser = HUBuser
localPortOffset = 1

Remote Configuration

For job submission to remote sites via ssh it is necessary to configure a remote job monitor and
a set of scripts to perform file transfer and batch job related functions. A set of scripts can be
used for each different batch submission system or in some cases they may be combined with
appropriate switching based on command line arguments. A separate job monitor is need for
each batch submission system. Communication between the HUB and remote resource via ssh
requires inclusion of a public key in the authorized_keys file.

Job monitor daemon

A remote job monitor runs a daemon process and reports batch job status to a central job
monitor located on the HUB. The daemon process is started by the central job monitor on
demand. The daemon terminates after a configurable amount of inactivity time. The daemon
code needs to be installed in the location declared in the monitors.dat file. The daemon requires
some initial configuration to declare where it will store log and history files. The daemon does
not require any special privileges any runs as a standard user. Typical configuration for the
daemon looks like this:

siteDesignator = "cluster"
monitorRoot = "/home/HUBuser/SubmitMonitor"
qstatCommand = "/usr/pbs/bin/qstat -u HUBuser"
monitorLogLocation = "logs"

The directory defined by the combination of monitorRoot and monitorLogLocation needs to be
created before the daemon is started. A sample daemon used for PBS batch systems is listed
below.

#!/usr/bin/env python
#
Copyright (c) 2004-2010 Purdue University All rights reserved.
#
Developed by: HUBzero Technology Group, Purdue University
http://hubzero.org
#
HUBzero is free software: you can redistribute it and/or modify it u
nder the terms of the
GNU Lesser General Public License as published by the Free Software

 54 / 63

INSTALLATION

Foundation, either
version 3 of the License, or (at your option) any later version.
#
HUBzero is distributed in the hope that it will be useful, but WITHO
UT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details. You sho
uld have received a
copy of the GNU Lesser General Public License along with HUBzero.
If not, see .
#
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
#
--
--
monitorPBS.py
#
script which monitors the PBS queue and reports changes in job stat
us
#
import sys
import os
import os.path
import select
import time
import popen2
import re
import signal

siteDesignator = "pbsHost"
monitorRoot = os.path.join(os.sep,'home','pbsUser','Submit','pb
sHost')
qstatCommand = "/usr/pbs/bin/qstat -u pbsUser"
monitorLogLocation = "logs"
monitorLogFileName = "monitorPBS.log"
historyFileName = "monitorPBS.history"

logFile = sys.stdout
historyFile = None
activeJobs = {}
updates = []

 55 / 63

INSTALLATION

def cleanup():
 global historyFile

 if historyFile:
 historyFile.close()

def sigGEN_handler(signal, frame):
 global siteDesignator

 cleanup()
 log("%s monitor stopped" % (siteDesignator))
 sys.exit(1)

def sigINT_handler(signal, frame):
 log("Received SIGINT!")
 sigGEN_handler(signal, frame)

def sigHUP_handler(signal, frame):
 log("Received SIGHUP!")
 sigGEN_handler(signal, frame)

def sigQUIT_handler(signal, frame):
 log("Received SIGQUIT!")
 sigGEN_handler(signal, frame)

def sigABRT_handler(signal, frame):
 log("Received SIGABRT!")
 sigGEN_handler(signal, frame)

def sigTERM_handler(signal, frame):
 log("Received SIGTERM!")
 sigGEN_handler(signal, frame)

signal.signal(signal.SIGINT, sigINT_handler)
signal.signal(signal.SIGHUP, sigHUP_handler)
signal.signal(signal.SIGQUIT, sigQUIT_handler)
signal.signal(signal.SIGABRT, sigABRT_handler)
signal.signal(signal.SIGTERM, sigTERM_handler)

def openLog(logName):
 global logFile

 try:
 logFile = open(logName,"a")

 56 / 63

INSTALLATION

 except:
 logFile = sys.stdout

def log(message):
 global logFile

 if message != "":
 logFile.write("[%s] %s\n" % (time.ctime(),message))
 logFile.flush()

def openHistory(historyName,
 accessMode):
 global historyFile

 if accessMode == "r":
 if os.path.isfile(historyName):
 historyFile = open(historyName,accessMode)
 else:
 historyFile = None
 else:
 historyFile = open(historyName,accessMode)

def recordHistory(id):
 global updates
 global activeJobs

 historyFile.write("%s:%s %s %s\n" % (siteDesignator,str(id),activeJ
obs[id][0],activeJobs[id][1]))
 historyFile.flush()
 updates.append(str(id) + " " + activeJobs[id][0] + " " + activeJobs
[id][1])

def getCommandOutput(command,
 streamOutput=False):
 child = popen2.Popen3(command,1)
 child.tochild.close() # don't need to talk to child
 childout = child.fromchild
 childoutFd = childout.fileno()
 childerr = child.childerr
 childerrFd = childerr.fileno()

 outEOF = errEOF = 0

 57 / 63

INSTALLATION

 BUFSIZ = 4096

 outData = []
 errData = []

 while 1:
 toCheck = []
 if not outEOF:
 toCheck.append(childoutFd)
 if not errEOF:
 toCheck.append(childerrFd)
 ready = select.select(toCheck,[],[]) # wait for input
 if childoutFd in ready[0]:
 outChunk = os.read(childoutFd,BUFSIZ)
 if outChunk == '':
 outEOF = 1
 outData.append(outChunk)
 if streamOutput:
 sys.stdout.write(outChunk)
 sys.stdout.flush()

 if childerrFd in ready[0]:
 errChunk = os.read(childerrFd,BUFSIZ)
 if errChunk == '':
 errEOF = 1
 errData.append(errChunk)
 if streamOutput:
 sys.stderr.write(errChunk)
 sys.stderr.flush()

 if outEOF and errEOF:
 break

 err = child.wait()
 if err != 0:
 log("%s failed w/ exit code %d" % (command,err))
 if not streamOutput:
 log("%s" % ("".join(errData)))

 return err,"".join(outData),"".join(errData)

if __name__ == '__main__':

 if monitorLogFileName != "stdout":
 openLog(os.path.join(monitorRoot,monitorLogLocation,monitorLogFi

 58 / 63

INSTALLATION

leName))

 log("%s monitor started" % (siteDesignator))

 sleepTime = 10
 pauseTime = 5.
 maximumConsectutiveEmptyQueues = 30*60/sleepTime

 openHistory(os.path.join(monitorRoot,historyFileName),"r")
 if historyFile:
lPBS:6760 R

 records = historyFile.readlines()
 for record in records:
 colon = record.find(":")
 if colon > 0:
 jobState = record[colon+1:].split()
 id = jobState[0]
 status = jobState[1]
 stage = "Simulation"
 activeJobs[id] = (status,stage)
 historyFile.close()

 completedJobs = []
 for activeJob in activeJobs:
 if activeJobs[activeJob][0] == "D":
 completedJobs.append(activeJob)

 for completedJob in completedJobs:
 del activeJobs[completedJob]

 openHistory(os.path.join(monitorRoot,historyFileName),"a")
 consectutiveEmptyQueues = 0

 toCheck = []
 toCheck.append(sys.stdin.fileno())
 while 1:
 updates = []
 currentJobs = {}
 completedJobs = []

 delayTime = 0
 while delayTime 0:
 updateMessage = str(len(updates)) + " " + siteDesignator + ":
" + ":".join(updates)
 sys.stdout.write("%s\n" % (updateMessage))

 59 / 63

INSTALLATION

 sys.stdout.flush()

 del updates

 if consectutiveEmptyQueues == maximumConsectutiveEmptyQueues:
 cleanup()
 log("%s monitor stopped" % (siteDesignator))
 sys.exit(0)

File transfer and batch job scripts

The simple scripts are used to manage file transfer and batch job launching and termination.
Examples of scripts suitable for use with PBS are listed here.

File transfer - input files

receiveinput.sh - receive compressed tar file containing input files required for the job. The file
.__fileTimeMarker is used to determine what files should be returned to the HUB.

#!/bin/sh
#
rm -rf $1
mkdir $1
exitStatus=$?

if [$exitStatus -eq 0] ; then
 cd $1
 exitStatus=$?

 if [$exitStatus -eq 0] ; then
 tar xvzf -
 exitStatus=$?

 touch .__fileTimeMarker
 sleep 1

 date +"%s" > $2
 fi
fi

exit $exitStatus

 60 / 63

INSTALLATION

Batch job script - submission

submitbatchjob.sh - submit batch job using supplied description file. If arguments beyond job
working directory and batch description file are supplied an entry is added to the remote site log
file. The log file provides a record relating the HUB end user to the remote batch job. The log file
should be placed at a location agreed upon by the remote site and HUB.

#!/bin/sh
#
cd $1
exitStatus=$?

if [$exitStatus -eq 0] ; then
 case $2 in
 *.pbs)
 JOBID=`qsub $2`
 exitStatus=$?
 if [$# -gt 2] ; then
 logRecord=`date`
 shift 2
 while [$# -gt 0] ; do
 logRecord=${logRecord}'\t'$1
 shift 1
 done
 logRecord=${logRecord}'\t'${JOBID}
 echo -e ${logRecord} >> pbslog
 fi
 ;;
 *)
 echo "Invalid job class $2"
 exitStatus=23
 ;;
 esac
fi

if [$exitStatus -eq 0] ; then
 echo ${JOBID}
else
 echo "-1"
fi
exit $exitStatus

File transfer - output files

transmitresults.sh - return compressed tar file containing job output files.

 61 / 63

INSTALLATION

#!/bin/sh
#
cd $1
exitStatus=$?

if [$exitStatus -eq 0] ; then
 tar czf - `find . -newer .__fileTimeMarker -not -name . -print`
 exitStatus=$?
fi

exit $exitStatus

Batch job script - termination

killbatchjob.sh - terminate the batch job

#!/bin/sh
#
case $2 in
 PBS)
 qdel $1
 exitStatus=$?
 ;;
 *)
 echo "Invalid job class $2"
 exitStatus=23
 ;;
esac

exit $exitStatus

File transfer - cleanup

cleanupjob.sh - remove job specific directory and any other dangling files

#!/bin/sh
#
rm -rf $1
exitStatus=$?

exit $exitStatus

 62 / 63

INSTALLATION

Access Control Mechanisms

By default tools and sites are configured so that access is granted to all HUB members. In some
cases it is desired to restrict access to either a tool or site to a subset of the HUB membership.
The keywords restrictedToUsers and restrictedToGroups provide a mechanism to apply
restrictions accordingly. Each keyword should be followed by a list of comma separated values
of userids (logins) or groupids (as declared when creating a new HUB group). If user or group
restrictions have been declared upon invocation of submit a comparison is made between the
restrictions and userid and group memberships. If both user and group restrictions are declared
the user restriction will be applied first, followed by the group restriction.

In addition to applying user and group restrictions another mechanism is provided by the
boolean keyword arbitraryExecutableAllowed in the sites configuration file. In cases where the
executable program is not pre-staged at the remote sites the executable needs to be transferred
along with the user supplied inputs to the remote site. Published tools will have their executable
program located in the /apps/tools/revision/bin directory. For this reason submitted programs
that reside in /apps are assumed to be validated and approved for execution. The same cannot
be said for programs in other directories. The common case where such a situation arises is
when a tool developer is building and testing within the HUB workspace environment. To grant a
tool developer the permission to submit such arbitrary applications the site configuration must
allow arbitrary executables and the tool developer must belong the system group submit.

Powered by TCPDF (www.tcpdf.org)

 63 / 63

http://www.tcpdf.org

