
TEMPLATES

Templates

Overview

A template is a series of files within the CMS that control the presentation of the content. The
template is not a website; it's also not considered a complete website design. The template is
the basic foundation design for viewing your website. To produce the effect of a "complete"
website, the template works hand-in-hand with the content stored in the database.

This article guides you through the process of designing your own template for a HUB. This is
intended for web designers/developers with a solid knowledge of CSS and HTML and some
basic sense of aesthetics.

Although many currently available HUBs tend to look somewhat similar, you have the freedom
to make your HUB look as unique as you want it to be simply by modifying a few CSS and
HTML files within your template folder.

Note: All the following articles will refer to construction of a front-end template. However, the
concepts, techniques, and methods used also apply to the creation of administrative (back-end)
templates unless otherwise noted.

Examples

We have provided an example template that you may use to follow along with the articles or use
as a starter for your own HUB template.

Download Basic Template (zip)

 1 / 74

/app/site/documentation/2-0-0/examples/tpl_neutral.zip

TEMPLATES

Structure

Overview

All templates should include a manifest in the form of an XML document named
templateDetails.xml. The file holds key "metadata" about the template and is essential. Without
it, your template won't be seen by the system.

Directory & Files

Templates are found in the /templates directory of a hub's /app. Specific template files are
contained within a directory of the same name as the template. While a template may contain
any number of files and sub-directories, it must contain at least two files: the primary layout
(index.php) and a XML manifest named templateDetails.xml.

/app
.. /templates
.. .. /{TemplateName}
.. /css
.. /html
.. /img
.. /js
.. error.php
.. component.php
.. index.php
.. templateDetails.xml
.. template_thumbnail.png
.. favicon.ico

 2 / 74

TEMPLATES

Fontcons

Overview

In a single collection, Fontcons is a pictographic language designed for a full array of web-
related actions and content. Although originally inspired by Font Awesome, we've heavily
modified and added to the available icons; Fontcons brings over 250 icons for use in a package
equivalent in file size to just one or two bitmapped icons!

Integration

The open source package contains several bootstrap CSS files for inclusion in your template.
These stylesheets can be found in the web root's /media/system/css directory. Here, our
attention is on `fontcons.css` which contains the necessary @font-face rules to start using
Fontcons.

@font-face {
 font-family: 'Fontcons';
 src: url('/media/system/css/fonts/fontcons-webfont.eot');
 src: url('/media/system/css/fonts/fontcons-
webfont.eot?#iefix') format('embedded-opentype'),
 url('/media/system/css/fonts/fontcons-
webfont.woff') format('woff'),
 url('/media/system/css/fonts/fontcons-
webfont.ttf') format('truetype'),
 url('/media/system/css/fonts/fontcons-
webfont.svg#FontconsRegular') format('svg');
 font-weight: normal;
 font-style: normal;
}

While you can include Fontcons on a per use basis (e.g., individual components), due to it being
relatively light-weight and several Hubzero components making use of it, we recommend
including the stylesheet into your site template.

In the <head> of your template's html, reference the location to fontcons.css:

<link rel="stylesheet" href="/media/system/css/fontcons.css" />

 3 / 74

http://fortawesome.github.com/Font-Awesome/
https://hubzero.org/download

TEMPLATES

Or import fontcons.css into your site's CSS:

/* Note: import rules MUST come first */
@import "/media/system/css/fontcons.css";

/* Other styles here */

A word of caution on using @import: Internet Explorer 8 and older will download stylesheets in
sequence rather than in parallel. This can have effects on page speed and flashes of un-styled
content before the CSS files have finished downloading. See Steve Souder's "donâ€™t use
@import" for more details.

Use

There are two primary ways to use the font, both with advantages and disadvantages. The first,
is to include the necessary HTML and unicode character directly into your markup.

The HTML:

✎ edit

The CSS:

.edit {
 font-family: "Fontcons"
}

The advantage here is greater browser compatibility. @font-face is supported by even Internet
Explorer 6. The disadvantage, however, is that you now have to edit the HTML wherever you
wish to insert an icon which could change depending upon the styling and theme of your
template. That could quickly become a headache!

The alternative is to use the CSS pseudo-elements :before and :after. This takes a little more
setup in your styles but offers greater flexibility and ease of change. Unfortunately, pseudo-
elements are not supported in Internet Explorer 7 or older. There is, however, a solution which
we'll get to in a moment.

 4 / 74

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/
http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

TEMPLATES

The HTML:

edit

The CSS:

/* Note the :before pseudo-element */
small.edit, /* for IE 7, more on that below */
.edit:before {
 font-family: "Fontcons"
 content: "\\270E"; /* unicode characters must start with a backsla
sh */
}

What about Internet Explorer 7?

.edit {
 *zoom:expression(this.runtimeStyle['zoom']='1', this.innerHTML='<s
mall class="edit">✎</small>' + this.innerHTML);
}

We use <small> in the example above since it's a relatively unused tag and lessens the
potential for styling conflicts. It should be noted that over-use of this technique can slow down IE
7 as it has to process and dynamically include content into the page upon render.

Icon List

\\f000
\\266B
\\f002
\\2709
\\2665
\\2605
\\2606
\\f007
\\f008

 5 / 74

TEMPLATES

\\f009
\\f00a
\\f00b
\\2714
\\2716
\\f00e
\\f010
\\f011
\\f012
\\2699
\\f014
\\2302
\\f016
\\f017
\\2641
\\f01e
\\f018
\\f019
\\f01a
\\f01b
\\f01c
\\f01d
\\21BB
\\f083
\\f092
\\f085
\\f08e
\\f08d
\\f077
\\23F0
\\f071
\\f081
\\260E
\\f056
\\f067
\\f062
\\f044
\\f061
\\f069
\\f07f
\\f01f
\\269B
\\f09c
\\f095
\\f0a1
\\f0a2

 6 / 74

TEMPLATES

\\f0a3
\\f0ad
\\f0ae
\\f0b0
\\f0b2
\\f0e3
\\f0d0
\\f0ea

\\f021
\\f022
\\f023
\\2691
\\f025
\\f026
\\f027
\\f028
\\f029
\\f02a
\\f02b
\\f02c
\\f02d
\\f02e
\\2399
\\f030
\\f031
\\f032
\\f033
\\f034
\\f035
\\f036
\\f037
\\f038
\\f039
\\f03a
\\f03b
\\f03c
\\f03d
\\f03e
\\f082
\\2692
\\25F7

 7 / 74

TEMPLATES

\\f080
\\f084
\\26DF
\\f004
\\26D3
\\f00c
\\237E
\\f072
\\231B
\\f068
\\f005
\\f05c
\\f054
\\f063
\\f053
\\f07d
\\f07e
\\f05f
\\f09a
\\f08f
\\f0a4
\\f0a5
\\f0a6
\\f0a7
\\f0ca
\\f0cb
\\f0cc
\\f0cd
\\f0ce
\\f0db

\\270E
\\f041
\\f043
\\25D1
\\270D
\\f045
\\2611
\\f047
\\21E4
\\f049
\\219E

 8 / 74

TEMPLATES

\\25B6
\\f04c
\\2588
\\21A0
\\21E4
\\f049
\\f052
\\2039
\\203A
\\2295
\\2296
\\f057
\\f058
\\f059
\\f05a
\\f05b
\\2297
\\f05d
\\2298
\\f087
\\f088
\\f086
\\f091
\\f093
\\270B
\\f00d
\\f08a
\\f006
\\f003
\\f001
\\f094
\\f078
\\f040
\\f060
\\f05e
\\f08c
\\f079
\\f097
\\f098
\\f03f
\\f096
\\f09d
\\f0a8
\\f0a9
\\f0aa
\\f0ab

 9 / 74

TEMPLATES

\\f0b1
\\f0c1
\\f0c2
\\f0c3
\\2622
\\2746

\\2190
\\2192
\\2191
\\2193
\\f064
\\f065
\\f066
\\271A
\\2010
\\273D
\\f06b
\\f06c
\\f06d
\\2601
\\f046
\\f06e
\\f070
\\26A0
\\2757
\\2708
\\f073
\\f074
\\f075
\\f0e5
\\f0e6
\\f02f
\\2303
\\2304
\\267B
\\f07a
\\f07b
\\f07c
\\2195
\\2194
\\f076

 10 / 74

TEMPLATES

\\f090
\\f08b
\\f089
\\2661
\\26A1
\\2702
\\22EF
\\f055
\\f042
\\2693
\\275D
\\275E
\\f04a
\\f048
\\f04d
\\f04e
\\f06f
\\f04f
\\f09b
\\f0a0
\\f0d7
\\f0d8
\\f0d9
\\f0da
\\f0d6
\\f0ea
\\f0c5

 11 / 74

TEMPLATES

Socicons

Overview

In a single collection, Socicons is a pictographic language containing icons for some of the most
popular social and web services such as Twitter, Facebook, and Google.

Integration

The open source package contains several bootstrap CSS files and fonts for inclusion in your
template. Below is the necessary @font-face rules to start using Socicons.

@font-face {
 font-family: 'Socicons';
 src: url('/media/system/css/fonts/socicons-webfont.eot');
 src: url('/media/system/css/fonts/socicons-
webfont.eot?#iefix') format('embedded-opentype'),
 url('/media/system/css/fonts/socicons-
webfont.woff') format('woff'),
 url('/media/system/css/fonts/socicons-
webfont.ttf') format('truetype'),
 url('/media/system/css/fonts/socicons-
webfont.svg#SociconsRegular') format('svg');
 font-weight: normal;
 font-style: normal;
}

Socicons is relatively lightweight due to the limited number of icons available and can be either
included in the stylesheet into your site template or on a per use basis (e.g., individual
components).

Use

There are two primary ways to use the font, both with advantages and disadvantages. The first,
is to include the necessary HTML and unicode character directly into your markup.

The HTML:

 facebook

 12 / 74

https://hubzero.org/download

TEMPLATES

The CSS:

.facebook {
 font-family: "Socicons"
}

The advantage here is greater browser compatibility. @font-face is supported by even Internet
Explorer 6. The disadvantage, however, is that you now have to edit the HTML wherever you
wish to insert an icon which could change depending upon the styling and theme of your
template. That could quickly become a headache!

The alternative is to use the CSS pseudo-elements :before and :after. This takes a little more
setup in your styles but offers greater flexibility and ease of change. Unfortunately, pseudo-
elements are not supported in Internet Explorer 7 or older. There is, however, a solution which
we'll get to in a moment.

The HTML:

facebook

The CSS:

/* Note the :before pseudo-element */
small.facebook, /* for IE 7, more on that below */
.facebook:before {
 font-family: "Socicons"
 content: "\\f013"; /* unicode characters must start with a backsla
sh */
}

What about Internet Explorer 7?

.facebook {
 *zoom:expression(this.runtimeStyle['zoom']='1', this.innerHTML='<s
mall class="facebook"></small>' + this.innerHTML);

 13 / 74

TEMPLATES

}

We use <small> in the example above since it's a relatively unused tag and lessens the
potential for styling conflicts. It should be noted that over-use of this technique can slow down IE
7 as it has to process and dynamically include content into the page upon render.

Icon List

\\f002 Hub
\\f001 Hub alt
\\f006 Purdue
\\f005 Purdue alt
\\f013 Facebook
\\f012 Facebook alt
\\f026 Dropbox
\\f025 Dropbox alt

\\f011 Twitter
\\f010 Twitter alt
\\f019 Github
\\f018 Github alt
\\f024 PayPal
\\f023 PayPal alt
\\f02a eBay
\\f029 eBay alt

\\f017 LinkedIn
\\f016 LinkedIn alt
\\f01b Pinterest
\\f01a Pinterest alt
\\f022 Skype
\\f021 Skype alt
\\f028 Dribbble
\\f027 Dribbble alt

 14 / 74

TEMPLATES

\\f02c Google
\\f02b Google alt
\\f015 Google+
\\f014 Google+ alt
\\f01d Vimeo
\\f01e Vimeo alt
\\f01f YouTube
\\f01e YouTube alt

 15 / 74

TEMPLATES

Packaging

Preparation

File Structure

The most basic files, such as index.php, error.php, templateDetails.xml,
template_thumbnail.png, favicon.ico should be placed directly in your template folder. The most
common is to place images, CSS files, JavaScript files etc in separate folders. Override files
must be placed in folders in the folder "html".

/{TemplateName}
 /css
 ... CSS files ...
 /html
 ... Overrides ...
 /images
 ... Image files ...
 /js
 ... JavaScript files ...
 composer.json
 error.php
 index.php
 templateDetails.xml
 template_thumbnail.png
 favicon.ico

Thumbnail Preview Image

A thumbnail preview image named template_thumbnail should be included in your template.
Image size is 206 pixels in width and 150 pixels high. Recommended file format is PNG.

Packaging

It is possible to install a template manually by copying the files using an SFTP client and
modifying the database tables. It is more efficient to create a package file in the form on a
composer.json document that will allow the Installer to do this for you. This package file resides
in the top-level of your template's directory and contains a variety of information:

basic descriptive details about your template (i.e. name), and optionally, a description,
copyright and license information.
the extension type (component, module, plugin, template)

 16 / 74

https://getcomposer.org/doc/01-basic-usage.md

TEMPLATES

optionally, a destined install directory

Composer Manifest

This composer.json file just outlines basic information about the template such as the owner,
version, etc. for identification by the installer and then tells the installer which files should be
copied and installed.

A typical component manifest:

{
 "name": "myorg/tpl_example",
 "description": "Example template",
 "license": "MIT",
 "type": "hubzero-template"
}

The hub includes some extra code that tells Composer where/how to install extensions, so it's
important to use the designated types. Available types are: hubzero-component, hubzero-
module, hubzero-plugin, hubzero-template.

XML Manifest (deprecated)

This XML file just lines out basic information about the template such as the owner, version, etc.
for identification by the installer and then provides optional parameters which may be set in the
Template Manager and accessed from within the module's logic to fine tune its behavior.
Additionally, this file tells the installer which files should be copied and installed.

A typical template manifest:

<?xml version="1.0" encoding="utf-8"?>
<extension version="1.5" type="template">
 <name>mynewtemplate</name>
 <creationDate>2008-05-01</creationDate>
 <author>John Doe</author>
 <authorEmail>john@example.com</authorEmail>
 <authorUrl>http://www.example.com</authorUrl>
 <copyright>John Doe 2008</copyright>
 <license>GNU/GPL</license>
 <version>1.0.2</version>

 17 / 74

TEMPLATES

 <description>My New Template</description>
 <files>
 <filename>index.php</filename>
 <filename>component.php</filename>
 <filename>templateDetails.xml</filename>
 <filename>template_thumbnail.png</filename>
 <filename>images/background.png</filename>
 <filename>css/style.css</filename>
 </files>
 <positions>
 <position>breadcrumb</position>
 <position>left</position>
 <position>right</position>
 <position>top</position>
 <position>user1</position>
 <position>user2</position>
 <position>user3</position>
 <position>user4</position>
 <position>footer</position>
 </positions>
</extension>

Let's go through some of the most important tags:

EXTENSION
The install tag has several key attributes. The type must be "template".

NAME
You can name the templates in any way you wish.

FILES
The files tag includes all of the files that will will be installed with the template.

POSITIONS
The module positions used in the template.

The one noticeable difference between this template manifest and the typical manifest of a
module or component is the lack of config. While templates may have their own params for
further configuration via the administrative back-end, they aren't as commonly found as in other
extension manifests. Most HUBzero templates do not include them.

 18 / 74

TEMPLATES

Output Overrides

Overview

There are many competing requirements for web designers ranging from accessibility to
legislative to personal preferences. Rather than trying to over-parameterise views, or trying to
aim for some sort of line of best fit, or worse, sticking its head in the sand, the CMS gives the
potential for the designer to take over control of virtually all of the output that is generated.

Except for files that are provided in the distribution itself, these methods for customization
eliminate the need for designers and developers to "hack" core files that could change when the
site is updated to a new version. Because they are contained within the template, they can be
deployed to the Web site without having to worry about changes being accidentally overwritten
when your System Administrator upgrades the site.

HUBzero allows for overriding not only views but CSS and Javascript as well. This allows for
even more individualistic styling of components and modules on HUBs.

Component Overrides

Note: Not all HUBzero modules will have layouts or CSS that can be overridden.

Layouts

Layout overrides only work within the active template and are located under the /html/ directory
in the template. For example, the overrides for "corenil" are located under
/app/templates/corenil/html/.

It is important to understand that if you create overrides in one template, they will not be
available in other templates.

The layout overrides must be placed in particular way. Using "kimera" as an example you will
see the following structure:

/templates
.. /kimera
.. .. /html
.. /com_content (this directory matches the component directory
 name)
.. /articles (this directory matches the view director
y name)
.. default.php (this file matches the layout file name)
.. form.php

 19 / 74

TEMPLATES

The structure for component overrides is quite simple:
/html/com_{ComponentName}/{ViewName}/{LayoutName}.php.

Sub-Layouts

In some views you will see that some of the layouts have a group of files that start with the
same name. The category view has an example of this. The blog layout actually has three parts:
the main layout file blog.php and two sub-layout files, blog_item.php and blog_links.php. You
can see where these sub-layouts are loaded in the blog.php file using the loadTemplate
method, for example:

echo $this->loadTemplate('item');
// or
echo $this->loadTemplate('links');

When loading sub-layouts, the view already knows what layout you are in, so you don't have to
provide the prefix (that is, you load just 'item', not 'blog_item').

What is important to note here is that it is possible to override just a sub-layout without copying
the whole set of files. For example, if you were happy with the default output for the blog layout,
but just wanted to customize the item sub-layout, you could just copy:

/components/com_content/views/category/tmpl/blog_item.php

to:

/templates/kimera/html/com_content/category/blog_item.php

When the CMS is parsing the view, it will automatically know to load blog.php from com_content
natively and blog_item.php from your template overrides.

Cascading Style Sheets

Over-ridding CSS is a little more straight-forward over-ridding layouts. Take the com_groups
component for example:

 20 / 74

TEMPLATES

/components
 /com_groups
 ...
 com_groups.css (the component CSS file)

To override the CSS, we simply copy or create a new CSS file named the same and place it in
the template's overrides:

/templates
.. /corenil
.. .. /html
.. /com_groups (this directory matches the component directory
 name)
.. groups.css (this file matches the CSS file name)

To push CSS from a component to the template, add the following somewhere in the
component:

$this->css('example.css');

Module Overrides

Note: Not all HUBzero modules will have layouts or CSS that can be overridden.

Layouts

Modules, like components, are set up in a particular directory structure.

/modules
.. /mod_latest_news
.. .. /tmpl
.. default.php (the layout)
.. helper.php (a helper file containing data logic)
.. .. mod_latest_news.php (the main module file)
.. .. mod_latest_news.xml (the installation XML file)

 21 / 74

TEMPLATES

Similar to components, under the main module directory (in the example, mod_latest_news)
there is a /tmpl/ directory. There is usually only one layout file but depending on who wrote the
module, and how it is written, there could be more.

As for components, the layout override for a module must be placed in particular way. Using
"corenil" as an example again, you will see the following structure:

/templates
.. /corenil
.. .. /html
.. /mod_latest_news (this directory matches the module directo
ry name)
.. default.php (this file matches the layout file name)

Take care with overriding module layout because there are a number of different ways that
modules can or have been designed so you need to treat each one individually.

Cascading Style Sheets

Over-ridding CSS files works in precisely the same way as over-ridding layouts. Take the
mod_reportproblems module for example:

/modules
 /mod_reportproblems
 ...
 mod_reportproblems.css (the module CSS file)

To override the CSS, we simply copy or create a new CSS file named the same and place it in
the template's overrides:

/templates
.. /corenil
.. .. /html
.. /mod_reportproblems (this directory matches the module dire
ctory name)
.. mod_reportproblems.css
 (this file matches the CSS file name)

 22 / 74

TEMPLATES

To push CSS from a module to the template, add the following somewhere in the module:

$this->css('mod_example.css');

Plugin Overrides

Note: Not all HUBzero plugins will have layouts or CSS that can be overridden.

Layouts

Plugins, like components and modules, are set up in a particular directory structure.

/plugins
.. /groups
.. .. /forum
.. forum.php (the main plugin file)
.. forum.xml (the installation XML file)
.. /views
.. /browse
.. /tmpl
.. default.php (the layout)
.. default.xml (the layout installation XML file)

Similar to components, under the views directory of the plugin's self-titled directory (in the
example, forum) there are directories for each view name. Within each view directory is a /tmpl/
directory. There is usually only one layout file but depending on who wrote the plugin, and how
it is written, there could be more.

As with components and modules, the layout override for a plugin must be placed in a particular
way. Using "corenil" as an example again, you will see the following structure:

/templates
.. /corenil
.. .. /html
.. /plg_groups_forum (this directory follows the naming patter
n of plg_{group}_{plugin})
.. /browse (this file matches the layout directory name)
.. default.php (this file matches the layout file name)

 23 / 74

TEMPLATES

Take care with overriding plugin layout because there are a number of different ways that
plugins can or have been designed so you need to treat each one individually.

Cascading Style Sheets

Over-ridding CSS files works in precisely the same way as over-ridding layouts. Take the forum
plugin for groups for example:

/plugins
.. /groups
.. .. /forum
.. /assets
.. /css
.. forum.css (the plugin CSS file)

To override the CSS, we simply copy or create a new CSS file named the same and place it in
the template's overrides:

/templates
.. /corenil
.. .. /html
.. /plg_groups_forum (this directory follows the naming patter
n of plg_{group}_{plugin})
.. forum.css (this file matches the CSS file name)

To push CSS from a module to the template, add the following somewhere in the module:

$this->css('forum.css');

Pagination Links Overrides

This override can control the display of items-per-page and the pagination links that are used
with lists of information. Most HUBzero templates will come with a pagination override that
outputs what we feel is a good standard for displaying pagination links and controls. However,
feel free to alter this as you see fit. The override can be found here:

/templates/{TemplateName}/html/pagination.php

 24 / 74

TEMPLATES

When the pagination list is required, Joomla! will look for this file in the default templates. If it is
found it will be loaded and the display functions it contains will be used. There are four functions
that can be used:

pagination_list_footer
This function is responsible for showing the select list for the number of items to display
per page.

pagination_list_render
This function is responsible for showing the list of page number links as well at the Start,
End, Previous and Next links.

pagination_item_active
This function displays the links to other page numbers other than the "current" page.

pagination_item_inactive
This function displays the current page number, usually not hyperlinked.

Quick Reference

Using the corenil template as an example, here is a brief summary of the principles that have
been discussed.

Note: Not all HUBzero components, plugins, and modules will have layouts that can be
overridden.

Component Output

To override a component layout (for example the default layout in the article view), copy:

/components/com_content/views/article/tmpl/default.php

to:

/templates/corenil/html/com_content/article/default.php

To override a component CSS (for example the stylesheet in the com_groups), copy:

/components/com_groups/site/assets/css/com_groups.css

 25 / 74

TEMPLATES

to:

/templates/corenil/html/com_groups/groups.css

To push CSS from a component to the template, add the following somewhere in the
component:

HubzeroDocumentAssets::addComponentStylesheet('com_example');

Module Output

To override a module layout (for example the Latest News module), copy:

/modules/mod_latest_news/tmpl/default.php

to:

/templates/corenil/html/mod_latest_news/default.php

To override a module CSS (for example the stylesheet in the mod_reportproblems), copy:

/modules/mod_reportproblems/assets/css/mod_reportproblems.css

to:

/templates/corenil/html/mod_reportproblems/mod_reportproblems.css

 26 / 74

TEMPLATES

To push CSS from a module to the template, add the following somewhere in the module:

HubzeroDocumentAssets::addModuleStylesheet('mod_example');

Plugin Output

To override a plugin layout (for example the Forum plugin for groups), copy:

/plugins/groups/forum/views/browse/tmpl/default.php

to:

/templates/corenil/html/plg_groups_forum/browse/default.php

To override a plugin CSS (for example the stylesheet for the forum plugin for groups), copy:

/plugins/groups/forum/forum.css

to:

/templates/corenil/html/plg_groups_forum/assets/css/forum.css

To push CSS from a plugin to the template, add the following somewhere in the plugin:

HubzeroDocumentAssets::addPluginStylesheet('groups', 'forum');

Customise the Pagination Links

To customize the way the items-per-page selector and pagination links display, edit the

 27 / 74

TEMPLATES

following file:

/templates/corenil/html/pagination.php

 28 / 74

TEMPLATES

JavaScript

Overview

HUBzero comes with the jQuery Javascript Framework included by a system plugin. jQuery is
not only a visual effects library–it also support Ajax request and JSON notation, table sort, drag
& drop operations and much more. All current HUBzero JavaScripts are built on this framework.

Directory & Files

The jQuery framework can be found within the /core/assets/js directory. It is a compressed
version used for production. An uncompressed version may be found at jquery.com.

/hubzero
 /media
 /system
 /js
 jquery.js

Most HUBzero templates will include some scripts of their own for basic setup, visual effects,
etc. These are generally stored in (but not limited to) a sub-directory, named /js, of the
template's main directory.

/hubzero
 /media
 /system
 /js
 jquery.fancybox.js
 jquery.fileuploader.js
 jquery.ui.js

Of the scripts commonly found in a HUBzero template, hub.js is perhaps the most important and
it is strongly encouraged that developers include these files in their template.

 29 / 74

http://jquery.com
http://jquery.com

TEMPLATES

hub.js

//---
// Create our namespace
//---
var HUB = HUB || {};
HUB.Base = {};

var alertFallback = true;
if (typeof console === "undefined" || typeof console.log === "undefine
d") {
 console = {};
 console.log = function() {};
}

//---
// Various functions - encapsulated in HUB namespace
//---
if (!jq) {
 var jq = $;

 $.getDocHeight = function(){
 var D = document;
 return Math.max(Math.max(D.body.scrollHeight, D.documentElement.scro
llHeight), Math.max(D.body.offsetHeight, D.documentElement.offsetHeigh
t), Math.max(D.body.clientHeight, D.documentElement.clientHeight));
 };
} else {
 jq.getDocHeight = function(){
 var D = document;
 return Math.max(Math.max(D.body.scrollHeight, D.documentElement.scro
llHeight), Math.max(D.body.offsetHeight, D.documentElement.offsetHeigh
t), Math.max(D.body.clientHeight, D.documentElement.clientHeight));
 };
}

var template = {};

jQuery(document).ready(function(jq){
 var $ = jq,
 w = 760,
 h = 520,
 templatepath = '/templates/template/';

 // Set focus on username field for login form
 if ($('#username').length > 0) {

 30 / 74

TEMPLATES

 $('#username').focus();
 }

 // Turn links with specific classes into popups
 $('a').each(function(i, trigger) {
 if ($(trigger).is('.demo, .popinfo, .popup, .breeze')) {
 $(trigger).on('click', function (e) {
 e.preventDefault();

 if ($(this).attr('class')) {
 var sizeString = $(this).attr('class').split(' ').pop();
 if (sizeString && sizeString.match(/d+xd+/)) {
 var sizeTokens = sizeString.split('x');
 w = parseInt(sizeTokens[0]);
 h = parseInt(sizeTokens[1]);
 }
 else if(sizeString && sizeString == 'fullxfull')
 {
 w = screen.width;
 h = screen.height;
 }
 }

 window.open($(this).attr('href'), 'popup', 'resizable=1,scrollbars
=1,height='+ h + ',width=' + w);
 });
 }
 if ($(trigger).attr('rel') && $(trigger).attr('rel').indexOf('extern
al') !=- 1) {
 $(trigger).attr('target', '_blank');
 }
 });

 if (jQuery.fancybox) {
 // Set the overlay trigger for launch tool links
 $('.launchtool').on('click', function(e) {
 $.fancybox({
 closeBtn: false,
 href: templatepath + 'images/anim/circling-ball-loading.gif'
 });
 });

 // Set overlays for lightboxed elements
 $('a[rel=lightbox]').fancybox();
 }

 31 / 74

TEMPLATES

 // Init tooltips
 if (jQuery.ui && jQuery.ui.tooltip) {
 $(document).tooltip({
 items: '.hasTip, .tooltips',
 position: {
 my: 'center bottom',
 at: 'center top'
 },
 // When moving between hovering over many elements quickly, the too
ltip will jump around
 // because it can't start animating the fade in of the new tip unti
l the old tip is
 // done. Solution is to disable one of the animations.
 hide: false,
 content: function () {
 var tip = $(this),
 tipText = tip.attr('title');

 if (tipText.indexOf('::') != -1) {
 var parts = tipText.split('::');
 tip.attr('title', parts[1]);
 }
 return $(this).attr('title');
 },
 tooltipClass: 'tooltip'
 });

 // Init fixed position DOM: tooltips
 $('.fixedToolTip').tooltip({
 relative: true
 });
 }

 //test for placeholder support
 var test = document.createElement('input'),
 placeholder_supported = ('placeholder' in test);

 //if we dont have placeholder support mimic it with focus and blur ev
ents
 if (!placeholder_supported) {
 $('input[type=text]:not(.no-legacy-placeholder-
support)').each(function(i, el) {
 var placeholderText = $(el).attr('placeholder');

 //make sure we have placeholder text
 if (placeholderText != '' && placeholderText != null) {

 32 / 74

TEMPLATES

 //add plceholder text and class
 if ($(el).val() == '') {
 $(el).addClass('placeholder-support').val(placeholderText);
 }

 //attach event listeners to input
 $(el)
 .on('focus', function() {
 if ($(el).val() == placeholderText) {
 $(el).removeClass('placeholder-support').val('');
 }
 })
 .on('blur', function(){
 if ($(el).val() == '') {
 $(el).addClass('placeholder-support').val(placeholderText);
 }
 });
 }
 });

 $('form').on('submit', function(event){
 $('.placeholder-support').each(function (i, el) {
 $(this).val('');
 });
 });
 }
};

HUB Namespace

Typically the template will include a file (hub.js) that first establishes a HUB namespace and
then proceeds through some basic setup routines. All HUBzero built components, modules, and
templates that employ JavaScript place scripts within this HUB namespace. This helps prevent
any naming collisions with third-party libraries. While it is recommended that any scripts you
may add to your code is also placed within the HUB namespace, it is not required.

Note: When not using jQuery, the template will include a global.js file that establishes the HUB
namespace.

Some additional sub-spaces for further organization are available within the HUB namespace.
Separate spaces for Modules, Components, and Plugins are created. Once again, this further
helps avoid possible naming/script collisions. Additionally, one more Base space is created for

 33 / 74

TEMPLATES

basic setup and utilities that may be used in other scripts.

// Create our namespace
if (!HUB) {
 var HUB = {};

 // Establish a space for setup/init and utilities
 HUB.Base = {};

 // Establish sub-spaces for the various extensions
 HUB.Components = {};
 HUB.Modules = {};
 HUB.Plugins = {};
}

To demonstrate adding code to the namespace, below is code from a script in a component
named com_example.

// Create our namespace
if (!HUB) {
 var HUB = {};

 // sub-space for components
 HUB.Components = {};
}

// The Example namespace and init method
HUB.Components.Example = {
 init: function() {
 // do something
 }
}

// Initialize the code (jQuery)
jQuery(document).ready(function($){
 Components.Example.init();
});

Loading From An Extension

 34 / 74

TEMPLATES

Components

Occasionally a component will have scripts of its own. Pushing JavaScript to the template from
a component is quite easy and involves only a few lines of code.

HubzeroDocumentAssets::addComponentScript('com_example');

First, we load the HubzeroDocumentAssets class. Next we call the static method
addComponentScript, passing it the name of the component as the first (and only) argument.
This will first check for the presence of the style sheet in the active template's overrides. If
found, the path to the overridden script will be added to the array of scripts the template needs
to include in the <head>. If no override is found, the code then checks for the existence of the
script in the component's directory. Once again, if found, it gets pushed to the template.

Modules

Loading Javascript from a module works virtually the same as loading from a component save
one minor difference in code. Instead of calling the addComponentScript method, we call the
addModuleScript method and pass it the name of the module.

HubzeroDocumentAssets::addModuleScript('mod_example');

Plugins

Loading Javascript from a plugin works similarly to loading from a component or module but
instead we call the addPluginScript method and pass it the name of the plugin group and the
name of the plugin.

HubzeroDocumentAssets::addPluginScript('examples', 'test');

Plugin Javascript must be named the same as the plugin and located within a directory of the
same name as the plugin inside the plugin group directory.

/plugins
 /examples
 /test
 test.css

 35 / 74

/documentation/22/webdevs/templates/overrides

TEMPLATES

 test.php
 test.xml

View Helpers (all extensions)

Modules, Component, and plugin views now have helpers for pushing Cascading StyleSheets
and JavaScript assets to the document. Each method automatically looks for overrides within
the current, active template, taking out the busy work of checking yourself each time assets are
added. The method names are short, accept a range of options, and allow for method chaining,
all tailored for brevity and ease of use.

The css() method provides a quick and convenient way to attach stylesheets. For components,
it accepts two arguments:

1. The name of the stylesheet to be pushed to the document (file extension is optional). If
no name is provided, the name of the component or plugin will be used. For instance, if
called within a view of the component "com_tags", the system will look for a stylesheet
named "tags.css".

2. The name of the extension to look for the stylesheet. For components, this will be the
component name (e.g., com_tags). For plugins, this is the name of the plugin folder and
requires the third argument of plugin group (type) be passed to the method.

3. *Plugin views only.* The name of the plugin.

Example:

<?php
// Push a stylesheet to the document
$this->css()
 ->css('another') // Extension (.css) is optional
 ->css('tags.css', 'com_tags'); // Load CSS from another compone
nt
?>
... view HTML ...

Along with file names, the method also accepts style declarations:

<?php
// Push a stylesheet to the document
$this->css('.foo {
 color: #000;

 36 / 74

TEMPLATES

}');
?>
... view HTML ...

Similarly, a js() method is available for pushing javascript assets to the document. The
arguments accepted are the same as the css() method described above.

<?php
// Push some javascript to the document
$this->js()
 ->js('another');
?>
... view HTML ...

And, just as the css() method accepts style declarations, the js() method accepts script
declarations:

<?php
// Push some javascript to the document
$this->js('
 jQuery(document).ready(function($){
 $("a").on("click", function(e){
 console.log($(this).attr("href"));
 });
 });
');
?>
... view HTML ...

 37 / 74

TEMPLATES

Cascading Style Sheets

Overview

CSS stands for Cascading Style Sheet. HTML tags specify the graphical flow of the elements,
be it text, images or flash animations, on a webpage. CSS allows us to define the appearances
of those HTML tags with their content, somewhere, so that other pages, if want be, may adhere
to. This brings along consistency throughout a website. The cascading effect stipulates that the
style of a tag (parent) may be inherited by other tags (children) inside it.

Professional websites separate styling from content. There are many reasons for this, the most
obvious (to a developer) being the ability to control the appearance of many pages by changing
one file. Styling information includes: fonts, backgrounds, images (that recur on every page),
position and dimensions of elements on the page. Your HTML file will now be left with: header
information; a series of elements; the text of your website. Because you are creating a Joomla!
template, you will actually have: some header information, PHP code to request the rest of the
header information, a series of elements, PHP code to request each module position, and PHP
code to request the main content.

Style information is coded in CSS and usually stored in files with the suffix .css. A webpage
contains a link to the associated .css file so a browser can find the appropriate style information
to apply to the page. CSS can also be placed inside a HTML file between <style
type="text/css"></style> tags. This is, however, discouraged as it is mixing style and content
elements which can make future changes more difficult.

Implementation

Definitions for this section:

External CSS files
using <link> in the <head>
Document head CSS

using <style> in the <head>
Inline CSS

using the style attribute on a tag, i.e. <div style="color:red;">

Guidelines

1. External CSS files should be used in preference to document head CSS and
document head CSS should be used in preference to inline CSS.

2. CSS files MUST have the file extension .css and should be stored in the relevant
includes directory in the site structure, usually /style/.

3. The file size of CSS files should be kept as low as possible, especially on high
demand pages.

4. External CSS must be linked to using the <link> element which must be placed

 38 / 74

TEMPLATES

in the head section of the document. This is the preferred method of using CSS.
It offers the best experience for the user as it helps prevent FOUC (flash of
unstyled content), promotes code reuse across a site and is cacheable.

5. External style sheets should not be imported (i.e. using @import) as it impairs
caching. In IE @import behaves the same as using <link> at the bottom of the
page (preventing progressive rendering), so it's best not to use it. Mixing <link>
and @import has a negative effect on browsers' ability to asynchronously
download the files.

6. Document head CSS may be used where a style rule is only required for a
specific page.

7. Inline styles should not be used.
8. Query string data (e.g. "style.css?v=0.1") should not be used on an external CSS

file. Use of query strings on CSS files prevents them from caching in some
browsers. Whilst this may be desirable for testing, and of course may be used for
that, it is very undesirable for production sites.

Directory & Files

Convention places CSS files within a directory named css inside the template directory.
While developers are not restricted to this convention, we do recommend it as it helps
keep the layout and structure of HUBzero templates consistent. A developer from one
project will instantly know where to find certain files and be familiar with the directory
structure when working on a project originally developed by someone else.

There are a handful of common CSS files found among most HUBzero. While none of
these are required, it is encouraged to follow the convention of including them as it
promotes consistency among HUBzero templates and comes with the advantage that
certain files, such as main.css are auto-loaded, thus reducing some work on the
developer's part.

Here's the standard directory and files for CSS found in a HUBzero template:

/hubzero
 /templates
 /{TemplateName}
 /css
 error.css
 browser/ie7.css
 browser/ie8.css
 browser/ie9.css
 main.css
 print.css
 component.css

 39 / 74

TEMPLATES

File details:

error.css
This is the primary stylesheet loaded by error.php.

ie8.css
Style fixes for Internet Explorer 8.

ie7.css
Style fixes for Internet Explorer 7.

ie9.css
Style fixes for Internet Explorer 9.

main.css
This is the primary stylesheet loaded by index.php. The majority of your styles
will be in here.

print.css
Styles used when printing a page.

component.css
This file is meant to be included before any other CSS file. Its purpose is to
reduce browser inconsistencies in things like default line heights, margins and
font sizes of headings, and so on.

Bootstrap

Several bootstrap styles are available in the core, broken into individual stylesheets to
make it easier for you to decide what styles you do and do not want to incorporate into
your template.

The bootstrap stylesheets can be found in the /core/assets/css directory and can be
linked to or imported like any other stylesheet. However, for sake of site performance,
we recommend using the HubzeroDocumentAssets::getSystemStylesheet() method.
This method accepts wither a comma-separated string or array of core stylesheets to
include and then compiles them into a single file with comments and white-space
stripped out. The resulting file is saved in the cache with a timestamp. Should any of the
core files change, the resulting compiled stylesheet will automatically be updated. This
has two immediate advantages of 1) fewer http requests (improves page load time) and
2) ensures browsers re-cache the CSS whenever it has changed.

Example usage:

<link rel="stylesheet" type="text/css" media="screen" href="<?php
 echo HubzeroDocumentAssets::getSystemStylesheet(array(
 'reset',
 'fontcons',
 'columns',
 'notifications',
 'pagination',

 40 / 74

TEMPLATES

 'tabs',
 'tags',
 'comments',
 'voting',
 'layout'
)); ?>" />

reset.css

This file is meant to be included before any other CSS file. Its purpose is to
reduce browser inconsistencies in things like default line heights, margins and
font sizes of headings, and so on.

The reset styles given here are intentionally very generic. There isn't any default
color or background set for the <body> element, for example. Colors and any
other styling should be addressed in the template's primary stylesheet after
loading reset.css.

fontcons.css

This is a custom created icon (dingbat) font used for many of the icons found
throughout a hub.

columns.css

This sets up basic structure for generating layouts that use columns. It supports
up to twelve columns and any combination there in. See usage.

notifications.css

Default styles for warning, error, help, and info messages.

pagination.css

Basic styling for pagination.

tabs.css

Default styles for a menu (list) displayed as tabs.

 41 / 74

/documentation/22/webdevs/templates/elements

TEMPLATES

tags.css

Tag styles. Tags are used frequently throughout a hub and this stylesheet helps
ensure the look consistent.

comments.css

Comments appear on many items such as KB articles, Questions and Answers,
Support tickets, Forums, Blog posts, and more. This is a stylesheet for handling
basic layout and styles of a list of (nested) comments and the form for submitting
comments.

voting.css

Basic styles for thumbs-up and thumbs-down voting buttons.

layout.css

Default styles for containers, result lists, and other basic structural items used
frequently in a hub.

Typical main.css Structure

main.css controls base styling for your HUB, which is usually further extended by
individual component CSS.

We took every effort to organize the main.css in a manner allowing you to easily find a
section and a class name to modify. E.g. if you want to change the way headers are
displayed, look for "headers" section as indicated by CSS comments. Although you can
modify all existing classes, depending on your objectives, it is recommended to avoid
modifications to certain sections, as indicated below. While you can add new classes as
needed, we caution strongly about removing or renaming any of the existing IDs and
classes. Many HUBzero components take advantage of these code styles and any
alterations made risk breaking the template display.

Some sections that you are likely to modify:

Body - may want to change site background or font family.
Links - pick colors for hyperlinks
Headers - pick colors and font size of headings

 42 / 74

TEMPLATES

Lists - may want to change general list style
Header - you will definitely want to change this
Toolbar - display of username, login/logout links etc.
Navigation - display of main menu
Breadcrumbs - navigation under menu on secondary pages
Extra nav - links that appear on the right-
hand side in multiple components
Footer

Sections where you would want to avoid serious modifications:

Core classes
Site notices, warnings, errors
Primary Content Columns
Flexible Content Columns
Sub menu - display of tabs in multiple components

print.css

This is a style sheet that is used only for printing. It removes unnecessary elements such
as menus and search boxes, adjusts any background and font colors as needed to
improve readability, and can expose link URLs through generated content (advanced
browsers only, e.g. Safari, Firefox).

error.css

This is a style sheet that is used only by the error.php layout. It allows for a more custom
styling to error pages such as "404 - Page Not Found".

Internet Explorer

We strongly encourage developers to test their templates in as many browsers and on
as many operating systems as possible. Most modern browsers will have little
differences in rendering, however, Internet Explorer deserves special mention here.

The most widely used browser, Internet Explorer, is also one of the most lacking in
terms of CSS support. Internet Explorer has also, traditionally, handled rendering of
block elements, element positioning, and other common tasks a bit differently than many

 43 / 74

TEMPLATES

other browsers. As can be expected, this has led to much controversy and discussion on
how best to handle such differences. We strongly recommend designing for and testing
your templates in alternate browsers such as Safari, Firefox, Chrome, or Opera and then
applying fixes to Internet Explorer afterwards. We recommend the use of conditional
comments to apply special Internet Explorer only stylesheets.

Conditional Comments

Conditional comments only work in Internet Explorer on Windows, and are thus
excellently suited to give special instructions meant only for Internet Explorer on
Windows. They are supported from Internet Explorer 5 onwards, and it is even possible
to distinguish between versions of the browser.

Conditional comments work as follows:

<!--[if IE 6]>
 Special instructions for IE 6 here
<![endif]-->

Their basic structure is the same as an HTML comment (<!-- -->). Therefore all other
browsers will see them as normal comments and will ignore them entirely. Internet
Explorer, however, recognizes the special syntax and parses the content of the
conditional comment as if it were normal page content. As such, they can contain any
web content you wish to display only to Internet Explorer. While we're using this feature
to load CSS files, it can also be used to load JavaScript or display Internet Explorer
specific HTML.

Note: Since conditional comments use the HTML comment structure, they can only be
included in HTML, and not in CSS files.

Conditional comments support some variation in syntax. For example, it is possible to
target a specific browser version as demonstrated above or target multiple versions such
as "all versions of Internet Explorer lower than 7". This can be done with a couple handy
operators:

gt = greater than
gte = greater than or equal to
lt = less than
lte = less than or equal to

<!--[if IE]>
 According to the conditional comment this is Internet Explorer
<![endif]-->

 44 / 74

TEMPLATES

<!--[if IE 5]>
 According to the conditional comment this is Internet Explorer 5
<![endif]-->
<!--[if IE 5.0]>
 According to the conditional comment this is Internet Explorer 5
.0
<![endif]-->
<!--[if IE 5.5]>
 According to the conditional comment this is Internet Explorer 5
.5
<![endif]-->
<!--[if IE 6]>
 According to the conditional comment this is Internet Explorer 6
<![endif]-->
<!--[if IE 7]>
 According to the conditional comment this is Internet Explorer 7
<![endif]-->
<!--[if IE 8]>
 According to the conditional comment this is Internet Explorer 8
<![endif]-->
<!--[if gte IE 5]>
 According to the conditional comment this is Internet Explorer 5
 and up
<![endif]-->
<!--[if lt IE 6]>
 According to the conditional comment this is Internet Explorer l
ower than 6
<![endif]-->
<!--[if lte IE 5.5]>
 According to the conditional comment this is Internet Explorer l
ower or equal to 5.5
<![endif]-->
<!--[if gt IE 6]>
 According to the conditional comment this is Internet Explorer g
reater than 6
<![endif]-->

So, to load stylesheets to specific versions of Internet Explorer in our template we do
something like the following:

<html>
 <head>
 ... other CSS files ...

 45 / 74

TEMPLATES

 <!--[if IE 7]>
 <link rel="stylesheet" type="text/css" media="screen" href=
"{TemplatePath}/{TemplateName}/css/ie7.css" />
 <![endif]-->
 <!--[if lte IE 6]>
 <link rel="stylesheet" type="text/css" media="screen" href=
"{TemplatePath}/{TemplateName}/css/ie6.css" />
 <![endif]-->
 </head>
 ...
</html>

Note: Conditional comments used CSS for should be placed inside the <head> tag of a
template after all other CSS have been linked for their affects to properly take place.

Loading From An Extension

Components

Often a component will have a style sheet of its own. Pushing CSS to the template from
a component is quite easy and involves only two lines of code.

HubzeroDocumentAssets::addComponentStylesheet('com_example');

First, we load the HubzeroDocumentAssets class. Next we call the static method
addComponentStylesheet, passing it the name of the component as the first (and only)
argument. This will first check for the presence of the style sheet in the active template's
overrides. If found, the path to the overridden style sheet will be added to the array of
style sheets the template needs to include in the <head>. If no override is found, the
code then checks for the existence of the CSS in the component's directory. Once
again, if found, it gets pushed to the template.

Modules

Loading CSS from a module works virtually the same as loading from a component save
one minor difference in code. Instead of calling the addComponentStylesheet method,
we call the addModuleStylesheet method and pass it the name of the module.

HubzeroDocumentAssets::addModuleStylesheet('mod_example');

 46 / 74

/documentation/22/webdevs/templates/overrides

TEMPLATES

Plugins

Loading CSS from a plugin works similarly to loading from a component or module but
instead we call the addPluginStylesheet method and pass it the name of the plugin
group and the name of the plugin.

HubzeroDocumentAssets::addPluginStylesheet('examples', 'test');

Plugin CSS must be named the same as the plugin and located within a directory of the
same name as the plugin inside the plugin group directory.

/plugins
 /examples
 /test
 test.css
 test.php
 test.xml

View Helpers (all extensions)

Modules, Component, and plugin views now have helpers for pushing Cascading
StyleSheets and JavaScript assets to the document. Each method automatically looks
for overrides within the current, active template, taking out the busy work of checking
yourself each time assets are added. The method names are short, accept a range of
options, and allow for method chaining, all tailored for brevity and ease of use.

The css() method provides a quick and convenient way to attach stylesheets. For
components, it accepts two arguments:

1. The name of the stylesheet to be pushed to the document (file extension is
optional). If no name is provided, the name of the component or plugin will be
used. For instance, if called within a view of the component "com_tags", the
system will look for a stylesheet named "tags.css".

2. The name of the extension to look for the stylesheet. For components, this will
be the component name (e.g., com_tags). For plugins, this is the name of the
plugin folder and requires the third argument of plugin group (type) be passed to
the method.

 47 / 74

TEMPLATES

3. *Plugin views only.* The name of the plugin.

Example:

<?php
// Push a stylesheet to the document
$this->css()
 ->css('another') // Extension (.css) is optional
 ->css('tags.css', 'com_tags'); // Load CSS from another co
mponent
?>
... view HTML ...

Along with file names, the method also accepts style declarations:

<?php
// Push a stylesheet to the document
$this->css('.foo {
 color: #000;
}');
?>
... view HTML ...

Similarly, a js() method is available for pushing javascript assets to the document. The
arguments accepted are the same as the css() method described above.

<?php
// Push some javascript to the document
$this->js()
 ->js('another');
?>
... view HTML ...

And, just as the css() method accepts style declarations, the js() method accepts script
declarations:

<?php

 48 / 74

TEMPLATES

// Push some javascript to the document
$this->js('
 jQuery(document).ready(function($){
 $("a").on("click", function(e){
 console.log($(this).attr("href"));
 });
 });
');
?>
... view HTML ...

Further Help

Resources for learning and sharpening CSS skills:

CSS Zen Garden
CSS From The Ground Up
Guide to Cascading StyleSheets
CSS School

 49 / 74

http://www.csszengarden.com/
http://www.wpdfd.com/issues/70/css_from_the_ground_up/
http://www.htmlhelp.com/reference/css/
http://www.w3schools.com/css/

TEMPLATES

Page Layout

Overview

A template will typically have two layout files: index.php for the majority of content and error.php
for custom error pages ("404 - Not Found", etc.). Both of these files are contained within the top
level of a template (i.e., they cannot be placed in a sub-directory of the template).

/app
 /templates
 /{TemplateName}
 error.php
 index.php

All the HTML that defines the layout of your template is contained in a file named index.php.
The index.php file becomes the core of every page that is delivered and, because of this, the file
is required. Essentially, you make a page (like any HTML page) but place PHP code where the
content of your site should go.

The error.php layout, unlike index.php is optional. When not included in a template, Joomla! will
use its default system error layout to display site errors such as "404 - Page Not Found".
Including error.php is recommended though as it helps give your site a more cohesive feel and
experience to the user.

A Breakdown of index.php

Note: For the sake of simplicity, we've excluded some more common portions found in
HUBzero templates. The portions removed were purely optional and not necessary for a
template to function correctly. We suggest inspecting other templates that may be installed on
your HUB for further details.

Starting at the top:

<?php
defined('_HZEXEC_') or die('Restricted access');

$this->addScript($this->baseurl . '/templates/' . $this->template . '/
js/hub.js');

// Get the user's browser and browser version
// We add this to the document root as classes for better targeting wi

 50 / 74

TEMPLATES

th CSS
$browser = new HubzeroBrowserDetector();
$b = $browser->name();
$v = $browser->major();

// Set the page title
$this->setTitle(Config::get('sitename') . ' - ' . $this->getTitle());
?>
<!DOCTYPE html>
<!--[if lt IE 7]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie6"> <![endif]-->
<!--[if IE 7]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie7"> <![endif]-->
<!--[if IE 8]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie8"> <![endif]-->
<!--[if IE 9]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie9"> <![endif]-->
<!--[if (gt IE 9)|!(IE)]><!--> <html dir="<?php echo $this->direction;
 ?>" lang="<?php echo $this->language; ?>" class="<?php echo $b . ' '
 . $b . $v; ?>"> <!--<![endif]-->

The first line prevents unauthorized people from looking at your coding and potentially causing
trouble. Then we grab a reference to the global site configuration. Next, we push some scripts
to the document, first checking if the jquery plugin is enabled. Following that, we get the current
site visitors browser and browser version. We add this to the document root as classes for
better targeting with CSS. The last line of PHP takes the current page title and prepends the
site's name. Thus, every page results with a title like "myHUB.org - My Page Title".

The first line of actual HTML tells the browser (and webbots) what sort of page it is. The next
line says what language the site is in.

<head>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php
 echo HubzeroDocumentAssets::getSystemStylesheet(array(
 'fontcons', 'reset', 'columns', 'notifications', 'pagination',
 'tabs', 'tags', 'comments', 'voting', 'layout'
)); /* reset MUST come before all others except fontcons */ ?>" />
 <!-- Include the template's main CSS file -->
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ech
o $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/main.
css" />
 <link rel="stylesheet" type="text/css" media="print" href="<?php echo
 $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/print.

 51 / 74

TEMPLATES

css" />

 <!-- This includes metadata tags and the <title> tag -->
 <jdoc:include type="head" />

 <!--[if IE 9]>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ec
ho $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/brow
ser/ie9.css" />
 <![endif]-->
 <!--[if IE 8]>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ec
ho $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/brow
ser/ie8.css" />
 <![endif]-->
 <!--[if IE 7]>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php ec
ho $this->baseurl ?>/templates/<?php echo $this->template; ?>/css/brow
ser/ie7.css" />
 <![endif]-->
</head>

The first line compiles several bootstrap CSS files into a single, minified (comments and white-
space removed to lessen file size) file to reduce http requests.

The following two lines include the main stylesheet for the template and a print stylesheet that
applies more suitable styles when printing.

The fifth line gets Joomla! to put the correct header information in. This includes the page title,
meta information, your main.css, system JavaScript, as well as any CSS or JavaScript that was
pushed to the template from an extension (component, module, or plugin). This is a bit different
than Joomla! 1.5's typical behavior in that the HUBzero code is automatically finding and
including main.css and some key JavaScript files from your template. This is done due to the
fact that order of inclusion is important for both CSS and JavaScript. For instance, one cannot
execute JavaScript code built using the MooTools framework before the framework has been
included. It would simply fail. As such, the naming and existence of specific directories, CSS,
and JavaScript files becomes quite important for a HUBzero template.

The rest creates links to a couple CSS fix style sheets for Internet Explorer (more on this in the
Cascading Style Sheets chapter).

Now for the main body:

 52 / 74

/documentation/22/webdevs/templates/css

TEMPLATES

<body>

 <div id="header">
 <h1><a href="<?php echo $this->baseurl ?>" title="<?php echo Config:
:get('sitename'); ?>"><?php echo Config::get('sitename'); ?></h1>

 <ul id="toolbar" class="<?php if (!$juser->get('guest')) { echo 'log
gedin'; } else { echo 'loggedout'; } ?>">
<?php
 // Is the user logged in?
 if (!User::isGuest()) {
 // Yes. Show them a different toolbar.
 echo '<li id="logout">'.Lang::txt('Logout').
'';
 echo '<li id="myaccount"><spa
n>'.Lang::txt('My Account').'';
 echo '<li id="usersname">'.User::get('name').' ('.User::get('usernam
e').')';
 } else {
 // No. Show them the login and register options.
 echo "ttt".'<li id="login"><a href="/login" title="'.Lang::txt('Logi
n').'">'.Lang::txt('Login').''."n";
 echo "ttt".'<li id="register"><a href="/register" title="'.Lang::txt
('Sign up for a free account').'">'.Lang::txt('Register').''.
"n";
 }
?>

 <!-- Include any modules for the "search" position -->
 <jdoc:include type="modules" name="search" />
 </div><!-- / #header -->

 <!-- Include any modules assigned to the "user3" position -->
 <div id="nav">
 <h2>Navigation</h2>
 <jdoc:include type="modules" name="user3" />
 </div><!-- / #nav -->

 <div id="wrap">
 <div id="content" class="<?php echo $option; ?>">
 <!-- Include the component output -->
 <jdoc:include type="component" />
 </div><!-- / #content -->

 <div id="footer">

 53 / 74

TEMPLATES

 <!-- Include any modules assigned to the "footer" position -->
 <jdoc:include type="modules" name="footer" />
 </div><!-- / #footer -->
 </div><!-- / #wrap -->
</body>

First we layout the site's masthead in the <div id="header"> block. Inside, we set the <h1> tag to
the site's name, taken from the global site configuration.

Next, we move on to a toolbar that is present in the masthead of every page. This toolbar
contains "login" and "register" links when not logged in and "logout" and "My Account" links
when logged in. While not required, it is highly recommended that all templates include some
form of this arrangement in an easy-to-find, consistent location.

Some modules that have been assigned the position "search" are then loaded in the masthead.
Most HUBzero templates default to having a simple search form module appear. Again, this is
not required and placement of modules is entirely up to the developer(s) but we, once again,
strongly recommend that some form of a search box be included on all pages.

Then we move on to a block where navigation is loaded. It is here that our main menu will
appear.

Next, we get to the primary content block. One of the first things you may notice is the use of
module as a jdoc:include type. This is how we tell where in our template to output modules that
have been assigned to specific positions.

It is also worth noting the small bit of PHP (<?php echo $option; ?>) in the class attribute of the
content <div>. This small bit of code outputs the name of the current component as a CSS
class. So, if one were on a page of a "groups" component, the resulting HTML would be <div
id="content" class="com_groups">. Since all component output is contained inside the "content"
div, this allows for more specific CSS targeting.

See the Modules: Loading article for more details on module positioning.

The content div contains a very important jdoc:include of type component. This is where all
component output will be injected in the template. It is essential this line be included in a
template for it to be able to display any content.

A Breakdown of error.php

 54 / 74

/documentation/22/webdevs/modules.loading

TEMPLATES

Starting at the top:

<?php
defined('_HZEXEC_') or die('Restricted access');

// Get the user's browser and browser version
// We add this to the document root as classes for better targeting wi
th CSS
$browser = new HubzeroBrowserDetector();
$b = $browser->name();
$v = $browser->major();
?>
<!DOCTYPE html>
<!--[if lt IE 7]> <html dir="<?php echo $this->direction; ?>" la
ng="<?php echo $this->language; ?>" class="ie6"> <![endif]-->
<!--[if IE 7]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie7"> <![endif]-->
<!--[if IE 8]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie8"> <![endif]-->
<!--[if IE 9]> <html dir="<?php echo $this->direction; ?>" lang="
<?php echo $this->language; ?>" class="ie9"> <![endif]-->
<!--[if (gt IE 9)|!(IE)]><!--> <html dir="<?php echo $this->direction;
 ?>" lang="<?php echo $this->language; ?>" class="<?php echo $b . ' '
 . $b . $v; ?>"> <!--<![endif]-->

The first line prevents unauthorized people from looking at your coding and potentially causing
trouble. Then we grab a reference to the global site configuration. The first line of actual HTML
tells the browser (and webbots) what sort of page it is. The next line says what language the
site is in.

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title><?php echo Config::get('sitename'); ?> - <?php echo $this->tit
le; ?> - <?php echo $this->error->message ?></title>
 <link rel="stylesheet" type="text/css" media="all" href="<?php echo $
this->baseurl ?>/templates/<?php echo $this->template; ?>/css/error.cs
s" />
</head>

Unlike with index.php, we do not include the <jdoc:include type="head" /> tag. Instead, we

 55 / 74

TEMPLATES

simply set a single metadata tag to declare the character set and then set the title tag. Next, we
include the error.css style sheet, which contains styling just for this layout.

Now for the main body:

<body>
 <div id="wrap">
 <div id="header">
 <h1><a href="<?php echo $this->baseurl ?>" title="<?php echo $confi
g->getValue('config.sitename'); ?>"><?php echo Config::get('sitename')
; ?></h1>
 </div>
 <div id="outline">
 <div id="errorbox" class="code-<?php echo $this->error->code ?>">
 <h2><?php echo $this->error->code ?> - <?php echo $this->error->me
ssage ?></h2>

 <p><?php echo Lang::txt('You may not be able to visit this page be
cause of:'); ?></p>

 <?php echo Lang::txt('An out-of-
date bookmark/favourite'); ?>
 <?php echo Lang::txt('A search engine that has an out-of-
date listing for this site'); ?>
 <?php echo Lang::txt('A mis-typed address'); ?>
 <?php echo Lang::txt('You have no access to this page'); ?></
li>
 <?php echo Lang::txt('The requested resource was not found');
 ?>
 <?php echo Lang::txt('An error has occurred while processing
your request.'); ?>

 <p><?php echo Lang::txt('If difficulties persist, please contact t
he system administrator of this site.'); ?></p>
 </div><!-- / #errorbox -->

 <form method="get" action="/search">
 <fieldset>
 <?php echo Lang::txt('Please try the'); ?> <a href="index.php" ti
tle="<?php echo Lang::txt('Go to the home page'); ?>"><?php echo Lang:
:txt('Home Page'); ?> <?php echo Lang::txt('or'); ?>
 <label>
 <?php echo Lang::txt('Search:'); ?>
 <input type="text" name="searchword" value="" />

 56 / 74

TEMPLATES

 </label>
 <input type="submit" value="<?php echo Lang::txt('Go'); ?>" />
 </fieldset>
 </form>
 </div><!-- / #outline -->
<?php
 if ($this->debug) :
 echo "tt".'<div id="techinfo">'."n";
 echo $this->renderBacktrace()."n";
 echo "tt".'</div>'."n";
 endif;
?>
 </div><!-- / #wrap -->
</body>

As can be seen, this is relatively straight-forward. We set a title for the page, output the error
message, provide some potential reasons for the error and, finally, include a search form. Note
that we did not use any modules.

One portion to pay special attention to is the small bit of PHP at the end of the page. This
outputs a stack trace when site debugging is turned on.

Note: It is never recommended to turn on debugging on a production site.

Loading Modules

Modules may be loaded in a template by including a Joomla! specific jdoc:include tag. This tag
includes two attributes: type, which must be specified as module in this case and name, which
specifies the position that you wish to load. Any modules assigned to the specified position (set
via the administrative Module Manager) declared in the name attribute will have their output
placed in the template (the jdoc:include is removed by the CMS afterwards).

<jdoc:include type="modules" name="footer" />

See the Modules: Loading article for further details on how to use more advanced features.

 57 / 74

/documentation/22/webdevs/modules.loading

TEMPLATES

Designing

Overview

Although many currently available HUBs tend to look somewhat similar, you have the freedom
to make your HUB look as unique as you want it to be simply by modifying a few CSS and
HTML files within your template folder.

This article makes references to Adobe Photoshop for creation of design files and images but
the developer may use any imaging software they're comfortable with.

Creating A Mock-up

It is recommended to start the design of your HUB template by taking a look at a number of
other HUBs and websites and deciding which features are important and best serve the goals of
your HUB. Having PIs and other team members involved in the process from the start usually
saves much time for defining and polishing the design concept. Once you have a good idea of
the look and feel of your HUB and its main features, you would normally create a sketch of the
HUB front page in Adobe Photoshop or a similar graphics program. Any secondary page will
usually keep the header with the menu and login area, and the footer. For creating the
Photoshop mock-up, you are encouraged to use the hubtemplate.psd file attached in the
"Examples" section of the Templates Overview. Make sure to get feedback from others and
finalize the mock-up before jumping onto the next step.

 58 / 74

http://www.adobe.com/products/photoshop/compare/

TEMPLATES

 59 / 74

TEMPLATES

Elements & Typography

Grid (Columns)

For laying out content on a page, the core hub framework includes styles for a 12-column grid.

...

...

...

...

...

...

...

...

...

...

...

...

The grid supports up to 12 columns with span# and offset# classes.

Each column must have a .col class. The last column in a set must have the .omega class
added for IE 7 to work properly. No clearing div is required.

For example, a four column grid would look like:

<div class="grid">
 <div class="col span3">
 ...
 </div>
 <div class="col span3">
 ...

 60 / 74

TEMPLATES

 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

Output:

...

...

...

...

Spanning Columns

Columns can be spanned to easier portion content on the page. In the following example, we
span the first 6 columns in a container, then follow with two, smaller 3 column containers for a
3-column layout where the first column takes up 50% of the space.

<div class="grid">
 <div class="col span6">
 ...
 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

Output:

 61 / 74

TEMPLATES

...

...

...

Offsets

Columns may also be offset or 'pushed' over.

<div class="grid">
 <div class="col span3 offset3">
 ...
 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

Output:

...

...

...

Helper Classes

.span-quarter
Span 3 columns. This is equivalent to .span3

.span-third
Span 4 columns. This is equivalent to .span4

.span-half
Span 6 columns. This is equivalent to .span6

.span-two-thirds
Span 8 columns. This is equivalent to .span8

 62 / 74

TEMPLATES

.span-three-quarters
Span 9 columns. This is equivalent to .span9

A four column grid with the helper classes:

<div class="grid">
 <div class="col span-quarter">
 ...
 </div>
 <div class="col span-quarter">
 ...
 </div>
 <div class="col span-quarter">
 ...
 </div>
 <div class="col span-quarter omega">
 ...
 </div>
</div>

There are equivalent .offset- classes as well:

.offset-quarter
Offset 3 columns. This is equivalent to .offset3

.offset-third
Offset 4 columns. This is equivalent to .offset4

.offset-half
Offset 6 columns. This is equivalent to .offset6

.offset-two-thirds
Offset 8 columns. This is equivalent to .offset8

.offset-three-quarters
Offset 9 columns. This is equivalent to .offset9

Markup for a four column grid with the offset helper class:

<div class="grid">
 <div class="col span-quarter">
 ...
 </div>
 <div class="col offset-quarter span-quarter">
 ...
 </div>
 <div class="col span-quarter omega">

 63 / 74

TEMPLATES

 ...
 </div>
</div>

Output:

...

...

...

Nesting Grids

The following is an example of a 3 column grid nested inside the first column of another 3
column grid.

<div class="grid">
 <div class="col span6">
 <div class="grid">
 <div class="col span4">
 ...
 </div>
 <div class="col span4">
 ...
 </div>
 <div class="col span4 omega">
 ...
 </div>
 </div>
 </div>
 <div class="col span3">
 ...
 </div>
 <div class="col span3 omega">
 ...
 </div>
</div>

 64 / 74

TEMPLATES

Output:

...

...

...

...

...

Notifications

The core framework provides some base styles for alter and notifications.

<p class="passed">Success message</p>

Success message

<p class="info">Info message</p>

Info message

<p class="help">Help message</p>

Help message

<p class="warning">Warning message</p>

 65 / 74

TEMPLATES

Warning message

<p class="error">Error message</p>

Error message

Sections & Asides

The majority of hub components have content laid out in a primary content column with
secondary navigation or metadata in a smaller side column to the right. This is done by first
wrapping the entire content in a div with a class of .section. The content intended for the side
column is wrapped in a <div class="aside"> tag. The primary content is wrapped in a <div
class="subject"> tag and immediately follows the .aside column.

Note: The .aside column must come first in order for the content to be positioned properly. If,
unfortunately, this poses a semantic problem, we recommend using the grid system as a
potential alternative.

Using aside & subject differs from the grid system in that the .aside column has a fixed width
with the .subject column taking up the available left-over space. In the grid system, every
column is flexible (uses a percentage of the screen) and cannot have a specified, fixed width.

Example usage:

<section class="section">
 <div class="section-inner">
 <div class="aside">
 Side column content ...
 </div>
 <div class="subject">
 Primary content ...
 </div>
 </div>
</section>

Buttons

{xhub:include type="stylesheet" filename="/media/system/css/buttons.css"}

States

 66 / 74

TEMPLATES

default disabled active

default

disabled

active

Size

primary secondary

primary

secondary

Type

link button

link

<button class="btn" href="#">button</button>

<input type="submit" class="btn" value="input" />

Color

danger warning info success

danger

warning

info

success

 67 / 74

TEMPLATES

Icons

danger

warning

info

success

edit

delete

delete

secondary

danger

warning

...

Groups

 Dropdown

Action
Another action
Something else here

Separated link

<div class="btn-group dropdown">
 Dropdown

 <ul class="dropdown-menu">
 Action

 68 / 74

TEMPLATES

 Another action
 Something else here
 <li class="divider">
 Separated link

</div>

 Dropup

Action
Another action
Something else here

Separated link

<div class="btn-group dropup">
 ...
</div>

 Dropdown

Action
Another action
Something else here

Separated link

<div class="btn-group btn-secondary dropdown">
 ...
</div>

 prev all next

 69 / 74

TEMPLATES

<div class="btn-group">
 prev
 all
 next
</div>

 70 / 74

TEMPLATES

Languages

Overview

Language translation files are placed inside the appropriate language languages directory within
a template.

/templates
.. /foo
.. .. /languages
.. /{LanguageName}
.. {LanguageName}.tpl_{TemplateName}.ini

Setup

As previously mentioned, language files are setup as key/value pairs. A key is used within the
template's code and the translator retrieves the associated string for the given language. The
following code is an extract from a typical language file.

; Template Test (en-US)
TPL_TEST_HERE_IS_LINE_ONE = "Here is line one"
TPL_TEST_HERE_IS_LINE_TWO = "Here is line two"
TPL_TEST_MYLINE = "My Line"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of TPL_{TemplateName}_{Text} for naming. Adhering to this
naming convention is not required but is strongly recommended as it can help avoid potential
translation collisions.

See the Languages overview for details.

Loading

The appropriate language file for a template is preloaded, as long as it follows the naming
conventions detailed above, when the template is rendered. As such, no manual loading is
necessary. However, if you wish to load an alternate language file, you can do so by calling

 71 / 74

/documentation/22/webdevs/extensions.languages

TEMPLATES

Lang::load($extension);. The following example demonstrates, from a template layout, loading a
language file for the component 'com_test' out of the /hub/app/languages directory.

<?php
// No direct access
defined('_HZEXEC_') or die();

Lang::load('com_test', PATH_APP . '/languages');
?>
<html>
...

Translating Text

Below is an example of accessing the translate helper:

<p><?php echo Lang::txt("TPL_TEST_MY_LINE"); ?></p>

Strings or keys not found in the current translation file will output as is.

See the Languages overview for details.

 72 / 74

/documentation/22/webdevs/extensions.languages

TEMPLATES

Migrations

All the common extension types for HUBzero can include their own migrations directory.
Migrations are used for installing the extension into the required tables for the CMS to know
about said extension's existence, installing any needed tables, installing sample data, etc.

To illustrate the typical component directory structures and files:

/app
.. /templates
.. .. /{TemplateName}
.. /css
.. /html
.. /img
.. /js
.. /migrations
.. /Migration20190301102219TplExample.php
.. error.php
.. component.php
.. index.php
.. templateDetails.xml
.. template_thumbnail.png
.. favicon.ico

See the Migrations documentation for more about naming conventions, setup, etc.

Templates typically have at least one initial migration for registering the extension with the CMS.
This migration typically just involves calling the addTemplateEntry helper method:

<?php

use HubzeroContentMigrationBase;

// No direct access
defined('_HZEXEC_') or die();

/**
 * Migration script for registering the example plugin
 **/
class Migration20190301102219TplExample extends Base
{
 /**

 73 / 74

/documentation/220/webdevs/database/migrations

TEMPLATES

 * Up
 **/
 public function up()
 {
 // Register the template
 //
 // @param string $element Template element
 // @param string $name (option) Template name
 // @param int $client (optional, default: 1) Admin (1) or s
ite (0) client
 // @param int $enabled (optional, default: 1) Whether or not
 the template should be enabled (1=yes, 0=no)
 // @param int $home (optional, default: 0) Whether or not
 this should become the enabled/home template (1=yes, 0=no)
 // @param array $styles (optional) Template styles
 $this->addTemplateEntry('example', 'example', 0, 1, 0);
 }

 /**
 * Down
 **/
 public function down()
 {
 // Unregister the template
 //
 // @param string $name Template element name
 // @param int $client Client id
 $this->deleteTemplateEntry('example', 0);
 }
}

That's all there is to it! The addTemplateEntry method adds the necessary entries to the needed
database tables for the CMS to be aware of the template's existence.

Powered by TCPDF (www.tcpdf.org)

 74 / 74

http://www.tcpdf.org

