
PLUGINS

Plugins

Overview

Plugins serve a variety of purposes. As modules enhance the presentation of the final output of
the Web site, plugins enhance the data and can also provide additional, installable functionality.
Plugins enable you to execute code in response to certain events, either Joomla! core events or
custom events that are triggered from your own code. This is a powerful way of extending the
basic CMS functionality.

See System Events for a list of core plugin events.

See Component Events for a list of component plugin events.

Core Types

Plugins are managed at a group level that is defined in the plugin's XML manifest file. While the
number of possible types of plugins is almost limitless, there are a number of core plugin types
that are used by the CMS. These core types are grouped into directories under /plugins. They
are:

antispam
authentication
content
cron
editors
editors-xtd
system
user

Antispam
plugins allow you to add to or replace existing anti spam filters to further protect your site
against spam and potentially malicious content.

Authentication
plugins allow you to authenticate (to allow you to login) against different sources. By
default you will authenticate against the user database when you try to login. However,
there are other methods available such as by OpenID, by a Google account, LDAP, and
many others. Wherever a source has a public API, you can write an authentication
plugin to verify the login credentials against this source. For example, you could write a
plugin to authenticate against Twitter accounts because they have a public API.

Content
plugins modify and add features to displayed content. For example, content plugins can
cloak email address or can convert URL's into SEF format. Content plugins can also
look for markers in content and replace them with other text or HTML. For example, the

 1 / 25

/documentation/2.0.0/webdevs/plugins.controllers#systemevents
/documentation/2.0.0/webdevs/plugins.controllers#componentevents

PLUGINS

Load Module plugin will take {*loadmodule banner1*} (you would remove the *'s in
practice. They are included to actually prevent the plugin from working in this article),
load all the modules in the banner1 position and replace the marker with that output.

Cron
plugins allow you to add timed "jobs" that are performed at regular intervals. These are
good for maintenance tasks, regularly sending emails (i.e., newsletters), etc.

Editor
plugins allow you to add new content editors (usually WYSIYWG).

Editor-XTD
(extended) plugins allow you to add additional buttons to the editors. For example, the
Image, Pagebreak and Read more buttons below the default editor are actually plugins.

System
plugins allow you to perform actions at various points in the execution of the PHP code
that runs a Joomla! Web site.

User
plugins allow you to perform actions at different times with respect to users. Such times
include logging in and out and also saving a user. User plugins are typically user to
"bridge" between web applications (such as creating a Joomla! to phpBB bridge).

Examples

A plugin demonstrating basic setup:

Download: System Test plugin (.zip)

 2 / 25

/app/site/documentation/2-1-0/examples/plg_system_test.zip

PLUGINS

Structure

Directory & Files

Plugin files are stored in a sub-directory of the /plugins directory. The sub-directory represents
what type the plugin belongs to. This allows for plugins of the same name but for different types.
For example, one could have a plugin named example for both the /system and /search types.

Specific plugin files are contained within a directory of the same name as the plugin. While a
plugin may contain any number of files and sub-directories, it must contain at least two files: the
entry point (PHP file of the same name as the plugin) and a XML manifest.

Note: plugins will always be within a type sub-directory and will never be found in the top-level
/plugins directory.

/app
.. /plugins
.. .. /{PluginType}
.. /{PluginName}
.. {PluginName}.php
.. {PluginName}.xml

From the structure detailed above, a "system" plugin called "foo" would have the following file
structure:

/app
.. /plugins
.. .. /system
.. /foo
.. foo.php
.. foo.xml

There are few restrictions on the file name for the plugin but it is recommended to stick with
alpha-numeric characters and underscores only.

Entry Point

Plugins are required to have a file with the same name as the plugin. This is the primary entry

 3 / 25

PLUGINS

point and will typically contain the plugin class that is to be executed.

 4 / 25

PLUGINS

Controllers

Overview

All plugins will have a primary class extending HubzeroPluginPlugin that contains the logic and
events to be triggered.

Structure

Here we have a typical plugin class:

<?php
// No direct access
defined('_HZEXEC_') or die();

/**
 * Example system plugin
 */
class plgSystemTest extends HubzeroPluginPlugin
{
 /**
 * Affects constructor behavior.
 * If true, language files will be loaded automatically.
 *
 * @var boolean
 */
 protected $_autoloadLanguage = false;

 /**
 * Constructor
 *
 * @param object $subject The object to observe
 * @param array $config An array that holds the plugin configurat
ion
 * @return void
 */
 public function __construct(&$subject, $config)
 {
 parent::__construct($subject, $config);

 // Do some extra initialization in this constructor if required
 }

 /**

 5 / 25

PLUGINS

 * Do something onAfterInitialise
 *
 * @return void
 */
 public function onAfterInitialise()
 {
 // Perform some action
 }
}

Let's look at this file in detail. Please note that the usual Docblock (the comment block you
normally see at the top of most PHP files) has been omitted for clarity.

The file starts with the normal check for defined('_HZEXEC_') which ensures that the file will fail
to execute if access directly via the URL. This is a very important security feature and the line
must be placed before any other executable PHP in the file (it's fine to go after all the initial
comment though).

All plugins must extend or be descendants of HubzeroPluginPlugin. The naming convention of
this class is very important. The formula for this name is:

plg + Proper case name of the plugin directory + Proper case name of the plugin file without the
extension.

Proper case simply means that we capitalise the first letter of the name. When we join them
altogether it's then referred to as "Camel Case". The case is not that important as PHP classes
are not case-sensitive but it's the convention Joomla! uses and generally makes the code a little
more readable.

For our test system plugin, the formula gives us a class name of:

plg + System + Test = plgSystemTest

Let's move on to the methods in the class.

The first method, which is called the constructor, is completely optional. This is used only when
some work is needed performed when the plugin is actually loaded. This happens with a call to
the helper method Plugin::import(<plugin_type>). This means that even if the plugin is never
triggered, for whatever reason, there is still an opportunity to execute code if needed in the
constructor.

The remaining methods will take on the name of "events" that are trigger throughout the
execution of the Joomla! code. In the example, we know there is an event called

 6 / 25

PLUGINS

onAfterInitialise which is the first event called after the application sets itself up for work.

The naming rule here is simple: the name of the method must be the same as the event on
which you want it triggered. The framework will auto-register all the methods in the class for
you.

System Events

One thing to note about system plugins is that they are not limited to handling just system
events. Because the system plugins are always loaded on each run of the CMS, you can
include any triggered event in a system plugin.

The events triggered are:

Antispam

onAntispamDetector
onAntispamTrain

Authentication

onAuthenticate

Content

onContentPrepare
onAfterDisplayTitle
onContentBeforeDisplay
onContentBeforeSave
onContentAfterSave
onContentBeforeDelete

Cron

onCronEvents

Editors

onInit
onGetContent
onSetContent
onSave
onDisplay
onGetInsertMethod

 7 / 25

PLUGINS

Editors XTD (Extended)

onDisplay

Search

onSearch
onSearchAreas

System

onAfterInitialise
onAfterRoute
onAfterDispatch
onAfterRender

User

onLoginUser
onLoginFailure
onLogoutUser
onLogoutFailure
onBeforeStoreUser
onAfterStoreUser
onBeforeDeleteUser
onAfterDeleteUser

 8 / 25

PLUGINS

Languages

Overview

Language translation files are placed inside the appropriate language languages directory within
a widget.

/hubzero
 /language
 /{LanguageName}
 {LanguageName}.plg_{GroupName}_{PluginName}.ini

Note: Plugin language files contain data for both the front-end and administrative back-end.

Setup

As previously mentioned, language files are setup as key/value pairs. A key is used within the
plugin's code and the translator retrieves the associated string for the given language. The
following code is an extract from a typical plugin language file.

; Plugin - System - Test (en-US)
PLG_SYSTEM_TEST_HERE_IS_LINE_ONE = "Here is line one"
PLG_SYSTEM_TEST_HERE_IS_LINE_TWO = "Here is line two"
PLG_SYSTEM_TEST_MYLINE = "My Line"

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of PLG_{PluginGroup}_{PluginName}_{Text} for naming.
Adhering to this naming convention is not required but is strongly recommended as it can help
avoid potential translation collisions.

See the Languages overview for details.

Loading

The appropriate language file for a plugin is not preloaded when the plugin is instantiated as
many plugins may not have language files at all. As such, one must specifically load any file(s) if

 9 / 25

/documentation/22/webdevs/extensions.languages

PLUGINS

they are needed. This can be done by setting the $_autoloadLanguage property to true or by
manually loading the desired language files by calling the loadLanguage() method. This method
accepts the name of the plugin (e.g., plg_{PluginGroup}_{PluginName}) and an optional base
path to start from (e.g., PATH_APP, PATH_CORE).

<?php
// No direct access
defined('_HZEXEC_') or die();

class plgSystemTest extends HubzeroPluginPlugin
{
 /**
 * Affects constructor behavior. If true, language files will be load
ed automatically.
 *
 * @var boolean
 */
 protected $_autoloadLanguage = true;
}

Note that the string passed to the loadLanguage() method matches the pattern for the naming
of the language file itself, minus the language prefix and file extension.

Translating Text

Below is an example of accessing the translate helper:

<p><?php echo Lang::txt("PLGN_EXAMPLE_MY_LINE"); ?></p>

Strings or keys not found in the current translation file will output as is.

See the Languages overview for details.

 10 / 25

/documentation/22/webdevs/extensions.languages

PLUGINS

Views

Overview

The majority of plugins will not have view files. Occasionally, however, a plugin will return HTML
and it is considered best practices to have a more MVC structure to your plugin and put all
HTML and display code into view files. This allows for separation of the logic from presentation.
There is a second advantage to this, however, which is that it will allow the presentation to be
overridden easily by any template for optimal integration into any site.

Overriding plugin, module, and component presentation in templates is further explained in the
Templates: Overrides section.

Directory Structure & Files

Plugins, like components and modules, are set up in a particular directory structure.

/plugins
.. /groups
.. .. /forum
.. forum.php (the main plugin file)
.. forum.xml (the installation XML file)
.. /views
.. /browse
.. /tmpl
.. default.php (the layout)
.. default.xml (the layout installation XML file)

Similar to components, under the views directory of the plugin's self-titled directory (in the
example, forum) there are directories for each view name. Within each view directory is a /tmpl/
directory. There is usually only one layout file but depending on who wrote the plugin, and how
it is written, there could be more.

Implementation

Loading a plugin view

class plgExamplesTest extends HubzeroPluginPlugin
{
 ...

 11 / 25

/documentation/22/webdevs/templates.overrides

PLUGINS

 public function onReturnHtml()
 {
 // Instantiate a new view
 $view = new HubzeroPluginView(array(
 'folder'=>'examples',
 'element'=>'test',
 'name'=>'display'
));

 // Set any data the view may need
 $view->hello = 'Hello, World';

 // Set any errors
 if ($this->getError())
 {
 $view->setError($this->getError());
 }

 // Return the view
 return $view->loadTemplate();
 }
}

In the example, we're instantiating a new plugin view and passing it an array of variables that
tell the object where to load the view HTML from. folder is the plugin group, element is the
plugin, and name is the name of the view that is to be loaded. So, in this case, it would
correspond to a view found here:

/plugins
.. /examples
.. .. /test
.. /views
.. /display
.. /tmpl
.. default.php (the layout)
.. default.xml (the layout installation XML file)

Also note that we're returning $view->loadTemplate() rather than calling $view->display(). The
loadTemplate() method captures the HTML output of the view rather than printing it out to the

 12 / 25

PLUGINS

screen. This allows us to store the output in a variable and pass it around for later display.

The plugin view file

Our view (default.php) is constructed the same as any module or component view file:

<?php defined('_HZEXEC') or die('Restricted access'); // no direct acc
ess ?>
<p>
 <?php echo $this->hello; ?>
</p>

Sub-Views

Loading a sub-view (a view within a view, also commonly called a "partial") can now be done via
the view() method. This method accepts three arguments: 1) the view name, 2) the parent folder
name and 3) the plugin name. If the second and third arguments are not passed, the parent
folder is inherited from the view the method is called from (i.e., $this).

Example (called from within a plugin view):

... html ...
<?php
 $this->view('layout')
 ->set('foo', $bar)
 ->display();
?>
... html ...

 13 / 25

PLUGINS

Assets

Overview

Although less common than components or modules, sometimes a module to plugin has need
for its own styles and scripts to further enhance the user experience. There are a number of
helpers to make adding CSS and Javascript to a the document a quick and easy process.

Directory Structure & Files

Assets are stored in the same directory as the plugin file itself and, while there are no hard rules
on the placement and organization of the files, it is highly recommended to follow the structure
detailed below as it helps keep both small and large projects clean, organized, and allows for
several helper methods (detailed in the "Helpers" section).

All assets are stored within an assets folder, which is further sub-divided by asset type. The
most common types being js (javascript), css (cascading stylesheets), and img (images) but
may also contain any other asset such as fonts, less, and so on.

/app
.. /plugins
.. .. /{PluginType}
.. /{PluginName}
.. /assets
.. /css
.. /img
.. /js

Helpers

The HubzeroPluginPlugin class brings with it some useful methods for pushing StyleSheets and
JavaScript assets to the document as well as building paths for images. These methods can be
called from within the extended helper class or a plugin view.

Cascading Stylesheets

The css() method provides a quick and convenient way to attach stylesheets. It accepts two
arguments:

1. The name of the stylesheet to be pushed to the document (file extension is optional). If
no name is provided, the name of the plugin will be used. For instance, if called within a
view of the members plugin profile, the system will look for a stylesheet named

 14 / 25

PLUGINS

profile.css.
2. The name of the extension to look for the stylesheet. This accepts either module,

component or plugin name and will follow the same naming conventions used for
extension directories (e.g. "com_tags", "mod_login", etc). Passing an extension name of
"system" will retrieve assets from the core system assets (/core/assets).

For the defined stylesheet to be found, the assets must be organized as described in the
"Directory Structure & Files" section.

Method chaining is also allowed.

<?php
// Push a stylesheet to the document
$this->css()
 ->css('another');
?>
... view HTML ...

Javascript

Similarly, a js() method is available for pushing javascript assets to the document. The
arguments accepted are the same as the css() method described above.

<?php
// Push some javascript to the document
$this->js()
 ->js('another');
?>
... view HTML ...

Images

Finally, a img() method is available for building paths to images within the plugin's assets
directory. Unlike the css() and js() methods, this helper does not add anything to the global
document object and, instead, simply returns an absolute file path.

Given the following directory structure:

/app
.. /plugins
.. .. /{PluginType}

 15 / 25

PLUGINS

.. /{PluginName}

.. /assets

.. /img

.. picture.png

From a view within the plugin:

<!-- Generate the path to the image -->
<img src="<?php echo $this->img('picture.png'); ?>" alt="My picture" /
>

 16 / 25

PLUGINS

Configuration

Overview

Just as with components and modules, each plugin allows for its own set of configuration values
that can be set via the administrative interface.

Defining Options

Configuration options can be defined in the plugin's manifest XML file located in the plugin's
directory.

/app
.. /plugins
.. .. /{PluginType}
.. /{PluginName}
.. {PluginName}.xml

The XML file's root element will have a child node of <config>. Fields are then added and
grouped by fieldsets. These fieldsets correspond to the tabs located in the admin side when
viewing the plugin's options.

<?xml version="1.0" encoding="utf-8"?>
<extension>
 <config>
 <fieldset
 name="greetings"
 label="PLG_HELLO_WORLD_CONFIG_GREETING_SETTINGS_LABEL"
 description="PLG_HELLO_WORLD_CONFIG_GREETING_SETTINGS_DESC"
 >
 <field
 name="greeting"
 type="text"
 label="PLG_HELLO_WORLD_FIELD_GREETING_LABEL"
 description="PLG_HELLO_WORLD_FIELD_GREETING_DESC"
 default=""
 />
 </fieldset>
 </config>
</extension>

 17 / 25

PLUGINS

It is good practice to use the plugin's language file to define all the appropriate strings.

Retrieving Values

One may quickly retrieve the options for any plugin by calling the params() method on the
Plugin facade or directly accessing the method on the underlying HubzeroPluginLoader class.
This method accepts two arguments of the plugin type and plugin name and returns a
HubzeroConfigRegistry object.

$params = Plugin::params('hello', 'world');

echo $param->get('greeting');

Alternatively, all plugin instances should already have their params available upon instantiation.

<?php

class plgHelloWorld extends HubzeroPluginPlugin
{
 public function onGreeting()
 {
 echo $this->params->get('greeting');
 }
}

 18 / 25

PLUGINS

Packaging

Overview

It is possible to install a plugin manually by copying the files using an SFTP client and modifying
the database tables. It is more efficient to create a package file in the form on a composer.json
document that will allow the Installer to do this for you. This package file resides in the top-level
of your plugin's directory and contains a variety of information:

basic descriptive details about your plugin (i.e. name), and optionally, a description,
copyright and license information.
the extension type (component, module, plugin, template)
a destined install directory

Composer Manifest

This composer.json file just outlines basic information about the plugin such as the owner,
version, etc. for identification by the installer and then tells the installer which files should be
copied and installed.

A typical component manifest:

{
 "name": "myorg/plg_system_example",
 "description": "Example system plugin",
 "license": "MIT",
 "type": "hubzero-plugin",
 "extra": {
 "install-directory": "/plugins/system/example/"
 }
}

The hub includes some extra code that tells Composer where/how to install extensions, so it's
important to use the designated types. Available types are: hubzero-component, hubzero-
module, hubzero-plugin, hubzero-template. Unlike other extensions, the "install-directory"
parameter found under "extra" is required for plugins.

Structure

 19 / 25

https://getcomposer.org/doc/01-basic-usage.md

PLUGINS

Packaging a plugin for distribution is relatively easy. The file and directory structure is exactly as
it would be after installation. Here's what a typical package will look like:

/plg_{type}_{name}
 {name}.php
 {name}.xml
 composer.json

XML Manifest (deprecated)

All plugins should include a manifest in the form of an XML document named the same as the
plugin. So, a plugin named test.php would have an accompanying test.xml manifest.

<?xml version="1.0" encoding="utf-8"?>
<extension version="1.7" type="plugin" group="system">
 <name>System - Test</name>
 <author>Author</author>
 <creationDate>Month 2008</creationDate>
 <copyright>Copyright (C) 2008 Holder. All rights reserved.</copyright
>
 <license>GNU General Public License</license>
 <authorEmail>email</authorEmail>
 <authorUrl>url</authorUrl>
 <version>1.0.1</version>
 <description>A test system plugin</description>
 <files>
 <filename plugin="example">example.php</filename>
 </files>
 <config>
 <fieldset>
 <field name="example"
 type="text"
 default=""
 label="Example"
 description="An example text parameter" />
 </fieldset>
 </config>
</extension>

Let's go through some of the most important tags:

 20 / 25

PLUGINS

INSTALL/EXTENSION
This tag has several key attributes. The type must be "plugin" and you must specify the
group. The group attribute is required and is the name of the directory you saved your
files in (for example, system, content, etc). We use the method="upgrade" attribute to
allow us to install the extension without uninstalling. In other words, if you are sharing
this plugin with other, they can just install the new version over the top of the old one.

NAME
We usually start the name with the type of plugin this is. Our example is a system plugin
and it has some some nebulous test purpose. So we have named the plugin "System -
Test". You can name the plugins in any way, but this is a common format.

FILES
The files tag includes all of the files that will will be installed with the plugin. Plugins can
also support be installed with subdirectories. To specify these just all a FOLDER tag,
<folder>test</folder>. It is common practice to have only one subdirectory and name it
the same as the plugin PHP file (without the extension of course).

PARAMS/CONFIG
Any number of parameters can be specified for a plugin. Please note there is no
"advanced" group for plugins as there is in modules and components.

 21 / 25

PLUGINS

Loading

Triggering Events

Plugins are lazy-loaded by default, which means they must be imported and registered with the
event dispatcher on a "as-needed" basis. This can be accomplished by using dot-notation when
triggering the event (more on that later) or by manually importing the necessary plugin group:

Plugin::import('groups');

The above line will import all published plugins of the type "groups"—that is, all plugins in
/plugins/groups—and register them as event listeners with the dispatcher.

To fire an event, one may use the Event facade, passing an instance of the event to the trigger
method. The trigger method will dispatch the event to all of its registered listeners:

// Import the "media" plugins
Plugin::import('media');

// Trigger the event
$results = Event::trigger('onAlbumAddedToLibrary', array($artist, $tit
le));

Here we have triggered the event 'onAlbumAddedToLibrary' and passed in the artist name and
title of the album. All plug-ins will receive these parameters, process them and optionally pass
back information. The trigger method will always return an array.

Although relatively short, the above code example can be simplified even further by using dot-
notation to combine the plugin group and event name into one:

// Load the plugin group "media" and trigger the event
$results = Event::trigger('media.onAlbumAddedToLibrary', array($artist
, $title));

Here, the trigger method recognizes dot-notation being used and extracts the plugin group from
the string, imports said plugin group, and registers them with the event dispatcher before

 22 / 25

PLUGINS

triggering the event. For those concerned about performance, it should be noted the importing
of plugins will only happen once.

Note: One thing to notice about the trigger method is that there is nothing defining which group
of plug-ins should be notified. In actuality, all plug-ins that have been loaded are notified
regardless of the group they are in. So, it's important to be sure that event names do not conflict
with any other plugin group's event name.

Stopping an Event

Sometimes, a plugin may need to prevent any further plugins from responding to an event. In
such cases, the event loop can be halted.

When an event is triggered, an event object is created to track responders, pass data, and
collect responses from listeners. For anonymous functions, this event object is passed as the
only argument. For legacy plugins, the object is attached as a public property to the plugin and
can be accessed by calling $this->event.

So, stopping an event is done by calling stop on the event object.

<?php
class plgSystemExample extends Plugin
{
 public function onAfterRoute()
 {
 // ... some logic here ...

 $this->event->stop();
 }
}

 23 / 25

PLUGINS

Migrations

All the common extension types for HUBzero can include their own migrations directory.
Migrations are used for installing the extension into the required tables for the CMS to know
about said extension's existence, installing any needed tables, installing sample data, etc.

To illustrate the typical component directory structures and files:

/app
.. /plugins
.. .. /system
.. /example
.. /migrations
.. /Migration20190301102219PlgSystemExaple.php
.. example.php

See the Migrations documentation for more about naming conventions, setup, etc.

Plugins typically have at least one initial migration for registering the plugin with the CMS which
just involves calling the addPluginEntry helper method:

<?php

use HubzeroContentMigrationBase;

// No direct access
defined('_HZEXEC_') or die();

/**
 * Migration script for registering the example plugin
 **/
class Migration20190301102219PlgSystemExample extends Base
{
 /**
 * Up
 **/
 public function up()
 {
 // Register the component Note the 'com_' prefix is optional.
 //
 // @param string $folder (required) Plugin folder
 // @param string $element (required) Plugin element

 24 / 25

/documentation/220/webdevs/database/migrations

PLUGINS

 // @param int $enabled (optional, default: 1) Whether o
r not the plugin should be enabled
 // @param string $params (optional) Plugin params (if alr
eady known)
 $this->addPluginEntry('system', 'example');
 }

 /**
 * Down
 **/
 public function down()
 {
 $this->deletePluginEntry('system', 'example');
 }
}

That's all there is to it! The addPluginEntry adds the necessary entries to the needed database
tables for the CMS to be aware of the plugin's existence.

Powered by TCPDF (www.tcpdf.org)

 25 / 25

http://www.tcpdf.org

