VIEWS

Views
Overview

The majority of plugins will not have view files. Occasionally, however, a plugin will return HTML
and it is considered best practices to have a more MVC structure to your plugin and put all
HTML and display code into view files. This allows for separation of the logic from presentation.
There is a second advantage to this, however, which is that it will allow the presentation to be
overridden easily by any template for optimal integration into any site.

Overriding plugin, module, and component presentation in templates is further explained in the
Templates: Overrides section.

Directory Structure & Files

Plugins, like components and modules, are set up in a particular directory structure.

/ pl ugi ns
/ groups
[forum
forum php (the main plugin file)
forum xmi (the installation XM file)
/views
/ browse
/tnpl
defaul t. php (the | ayout)
defaul t. xm (the layout installation XM. file)

Similar to components, under the views directory of the plugin's self-titled directory (in the
example, forum) there are directories for each view name. Within each view directory is a /tmpl/
directory. There is usually only one layout file but depending on who wrote the plugin, and how
it is written, there could be more.

Implementation
Loading a plugin view

cl ass pl gexanpl esTest extends Hubzer oPl ugi nPl ugi n
{

/documentation/22/webdevs/templates.overrides

VIEWS

public function onReturnH m ()
{
// Instantiate a new view
$vi ew = new Hubzer oPl ugi nVi ew array(
'fol der' =>" exanpl es’
"el ement’' =>'test',
"nane' =>' di spl ay’

));

/1l Set any data the view may need
$view>hello = "Hello, Wrld';

/1l Set any errors
if ($this->getError())
{

$vi ew >set Error($this->getError());

}

/! Return the view
return $vi ew >l oadTenpl ate();

}

In the example, we're instantiating a new plugin view and passing it an array of variables that
tell the object where to load the view HTML from. folder is the plugin group, element is the
plugin, and name is the name of the view that is to be loaded. So, in this case, it would
correspond to a view found here:

/ pl ugi ns
[exanpl es
/test
/views
/ di spl ay
[t npl
defaul t. php (the | ayout)
defaul t. xm (the layout installation XM file)

Also note that we're returning $view->loadTemplate() rather than calling $view->display(). The
loadTemplate() method captures the HTML output of the view rather than printing it out to the

VIEWS

screen. This allows us to store the output in a variable and pass it around for later display.
The plugin view file
Our view (default.php) is constructed the same as any module or component view file:

<?php defined(' HZEXEC) or die('Restricted access'); // no direct acc
ess 7>
<p>
<?php echo $this->hello; ?>
</ p>

Sub-Views

Loading a sub-view (a view within a view, also commonly called a "partial”) can now be done via
the view() method. This method accepts three arguments: 1) the view name, 2) the parent folder
name and 3) the plugin name. If the second and third arguments are not passed, the parent
folder is inherited from the view the method is called from (i.e., $this).

Example (called from within a plugin view):

... htm
<?php
$this->view'layout')
->set (' foo', $bar)
->di spl ay();
?>
ht

http://www.tcpdf.org

