
MUSE

Muse

Overview

Muse, with its connotation of inspiration and creativity, is the HUBzero framework for command
line tools and automation. Muse, by default, has commands for running migrations, clearing the
cache, creating scaffolding, updating your hub, and more. In addition to the default commands,
Muse can also be extended by individual components to provide component specific tools and
command line functionality. We'll walk through many of the detailed commands below, and then
give a brief description of how you can add your own commands to Muse.

Note that all commands below are assumed to come from your hub's document root.

So, to run muse, simply type:

php muse

This, like many other commands, will return your available options by default. The current list of
top level commands includes:

Cache
Configuration
Database
Environment
Extension
Group
Log
Migration
Repository
Scaffolding
Test
User

As a developer, you may find yourself in a given moment as either a consumer of existing
commands, or a creator of new commands, To understand the existing commands, jump over
to the commands chapter for more details about each command. Continue below to learn more
about creating your own commands.

Structure

 1 / 15

MUSE

Muse by default will look for commands in the Commands directory within the Hubzero Console
Library. If you're looking to add a new core command, this is where it will live.

The name of the command file becomes the name of the command itself. So, for example, the
Database command would be found at:

core/libraries/Hubzero/Console/Command/Database.php

Within the file itself, all public methods will be considered tasks that can be called on the
command. Private and protected methods will not be directly routable. To exemplify this, you'll
notice that the Database command has two tasks, dump and load. These are public methods
with the Database.php command class. At a minimum, commands are to implement the
CommandInterface, which requires three methods:

public function __construct(Output $output, Arguments $arguments);
public function execute();
public function help();

By extending the base command, you can further simplify things to only need the execute and
help methods. The execute task is the default task and is called when no task is explicity given.
The help command should establish meaninful descriptions of tasks and arguments available.

Often times it will make sense to simply route the execute command to the help command, thus
giving users an overview of your command and options by default

You can also namespace your commands. And by this we simply mean that you can use folders
to create logical subdivisions within your commands. You'll see this, for example, in the
Configuration command. The configuration command has two subcommands, aliases and
hooks. To call tasks on these commands, you simply:

php muse configuration:hooks add ...
php muse configuration:aliases help

Arguments and Output

Within the command there are two primary objects of interest on the command, the arguments
and the output.

 2 / 15

MUSE

Arguments

The primary function of the arguments class is to provide the command with access to the extra
arguments passed into the command by the user. There are really two primary styles or ways of
structuring a command arguments. For required commands, we typically use an ordered
variable approach to these arguments. Consider the scaffolding command. It expects a task of
the scaffolding action we are to perform, such as create or copy. We then expect the type of
item we will be scaffolding. This ultimately will look as follows:

php muse scaffolding create migration

Then, to access these types of arguments, we simply grab them by their index order:

$type = $this->arguments->getOpt(3);

The index numbers follow the underlying values from PHP's native arguments, where the script
is 0, the command is 1, the task is 2, and so on from there.

In addition to this initial style of argument, you can also accept named arguments. These are
often optional sorts of arguments, such as:

php muse scaffolding create migration --install-dir=/altlocation

And these would be accessed in a similar manner:

$installDir = $this->arguments->getOpt('install-dir');

Output

Throughout the course of your command, it's important to let the user know what you're doing,
and whether or not everything was successful. To do that, we use the output object on the
command. The primary methods of interest are:

$this->output->addLine('Hello');

 3 / 15

MUSE

$this->output->addString('hello');
$this->output->error('Something went wrong!');

Hopefully the method names are fairly self-explanatory. The addLine method adds the given
string along with a newline, whereas the addString simply outputs the given message. The error
command outputs the given message with error styling, and also stops execution immediatly
(this is important!).

Both the addLine and addString methods accept a second argument specifying a style for the
message. Available shortcut strings include: warning, error, info, and success. More fine-
grained control can be achieved by passing an array as the second parameter. This array can
have up to three arguments, specifying a format, color, and indentation. The available formats
include:

normal
bold
underline

And available colors include:

black
red
green
yellow
blue
purple
cyan
white

It's important to remember that care should be taken when specifying colors, as a given user's
console styles may make reading certain colors more difficult.

Here are some examples of using the message styles:

$this->output->addLine('All done here', 'success');
$this->output->addLine('Something went wrong!', ['color' => 'red', 'fo
rmat' => 'bold']);

Documentation

 4 / 15

MUSE

Documenting your commands is a good practice, both for you and for those that will be using
your commands. All commands are required to have a help function. That function will be used
to output the appropriate help info for the command. A typical help method will look something
like this:

public function help()
{
 $this
 ->output
 ->addOverview(
 'This is my command for doing great things'
)
 ->addTasks($this)
 ->addArgument(
 '--awesome-level: Set the awesomeness level',
 'Specify the desired level of awesomeness',
 'Example: --awesome-level=7'
);
}

The methods available for help documentation fairly straight-forward. The overview section,
generated by addOverview, is the main description of the command. The addTasks method is
used generate a list of available tasks within the command. Finally, the addArgument method
can be used to specify the available arguments that your command accepts.

The addTasks method generates the available tasks list based on public methods, as
mentioned above. To define the description for the method, include the @museDescription tag
in the method docblock, as shown below.

/**
 * Creates awesomeness
 *
 * @museDescription Constructs and does important things
 *
 * @return void
**/

The result of the above examples would render like this:

 5 / 15

MUSE

me@myhub.org:~# muse mycommand help
Overview:
 This is my command for doing great things

Tasks:
 create Constructs and does important things

Arguments:
 --awesome-level: Set the awesomeness level
 Specify the desired level of awesomeness
 Example: --awesome-level=7

Interactivity

Interactivity is a cool feature of Muse. This allows a more guided experience for users. For
example, instead of requiring users to provide four arguments, you can prompt for them, or even
tailor them based on previous arguments. An example of this can be found in the extension
command.

me@myhub.org:~# muse extension
What do you want to do? [add|delete|install|enable|disable] add
What extension were you wanting to add? com_awesome
Successfully added com_awesome!

To display a prompt to the user, simply use the getResponse method on the output object.

$name = $this->output->getResponse("What extension were you wanting to
 add?");

This will wait for a response and enter from the user.

When not to be interactive?

Interactivity is not always desired. If a user has set the non-interactive flag, or the current output
mode is non-standard, it becomes important to not wait for user input. To ensure proper
functionality in different environments and output formats, you should wrap all interactive calls in

 6 / 15

MUSE

the isInteractive check and provide an appropriate alternative (likely just checking for a given
argument).

// Check for interactivity
if ($this->output->isInteractive())
{
 // Prompt for action
 $action = $this->output->getResponse('What do you want to do?');
}
else
{
 // Otherwise show help output so user knows available options
 $this->output = $this->output->getHelpOutput();
 $this->help();
 $this->output->render();
 return;
}

Component Commands

In addition to the basic command library, individual commponents can contain commands as
well. This makes adding site-specific commands easier (without modifying core HUBzero), as
well as allowing for a more logical grouping of functionality with other component-specific
models.

Site commands work in exactly the same manner as library commands, but are simply located
in an alternate place.

app/components/mycomponent/cli/commands/mycommand.php

Commands must still implement the command interface, and should function the same way as
library commands. They will not however, show up in the master command list obtained when
calling the global muse help command

 7 / 15

MUSE

Commands

Cache

The cache command is a helper for clearing your sites cache files. You can clear the entire
cache, or just the CSS cache. Those commands, respectively, are:

php muse cache clear

php muse cache:css clear

Configuration

The configuration command is used to personalize and customize your Muse experience. It's
also used to store variables for repeated use. For example, the scaffolding command will ask
you, if you haven't already, to set your name and email to be used when generating files.

muse configuration set --user_name="John Doe"
muse configuration set --user_email=john.doe@gmail.com

Configuration can also be used to store hooks and aliases. Hooks are additional commands that
are run at pre-defined points. Aliases are command shortcuts. Here are some examples:

run permissions fix after updating the repository
muse configuration:hooks add repository.afterUpdate "chmod -R g+w /www
/docroot"

Add a shortcut for the environment command
muse configuration:aliases add env environment

Database

The database command was added for two primary reasons - the first backups, and the second,
reverse content migration. Backups are fairly straight-forward, but a little more detail is in order
for reverse content migration.

 8 / 15

MUSE

If you have an environment with more than one stop in your production flow, you've likely run
into the problem of wanting to move data from prod to dev for testing purposes. But in so doing,
you often overwrite some site-specific configuation on dev. So get around this, we perform a
dump and load using the database command to move only those things that should move
between environments.

dump the database
muse database dump

then make sure you copy to your dev environment
then from dev, load the dump back up (it will have a different name)
muse database load filenamefromabovecommand

Environment

The environment command simply outputs the current environment variables.

Current user : Mr Awesome <awesome@gmail.com>
Current database : example

Extension

If you don't already know, extensions are the general name for all of the 'apps' allowed by the
HUBzero framework. They include (amoung some others), templates, components, modules,
and plugins. When adding a new extension, you will often want to add it to the extensions
database table and enable it. This command can help save you trips directly to the database.

The nice thing to about the extension command is that it will prompt you for what it needs, you
don't really need to remember the syntax.

me@me.org:~# muse extension
What do you want to do? [add|delete|install|enable|disable] add
What extension were you wanting to add? com_awesome
Successfully added com_awesome!

Or, as another example. Let's delete that entry we added above using the written out syntax

 9 / 15

MUSE

me@me.org:~# muse extension delete --name=com_awesome
Successfully deleted com_awesome!

Note that if you're in a production environment and using migrations, this command is
redundent. Use migrations! But if you're just testing and need a quick way to enable or disable
something, this is the way to go.

Group

The group commands are simply wrappers on existing commands to be used within the super
group context. Please review the super group documentation for more details.

Log

The log command is great for following and filtering log entries. There are currently two log
types available, the profile log and the query log. To start, simply:

muse log follow profile

You have to having logging enabled for new entries to be displayed!

Once started, you'll see info on the log fields being displayed.

me@me.org:~# muse log follow profile
The profile log has the following format (* indicates visible field):
<0:*timestamp> <1:*hubname> <2:*ip> <3:*app> <4:*uri> <5:*quer
y> <6:*memory> <7:*querycount> <8:*timeinqueries> <9:*totaltime>

To toggle a fields visibility, simply press the number next to the field of interest. For example,
pressing 2, and then f to show the fields again, results in:

 10 / 15

MUSE

> Hiding ip
> The profile log has the
following format (* indicates visible field):
<0:*timestamp> <1:*hubname> <2:ip> <3:*app> <4:*uri> <5:*quer
y> <6:*memory> <7:*querycount> <8:*timeinqueries> <9:*totaltime>

To show the available commands, simply type h.

> q: quit, h: help, i: input mode, p: pause/play, b: beep on/off, f: f
ields, r: rerender last 100 lines

Migration

For more info on the migration command, see the dedicated migrations section under the
database chapter.

Repository

The repository command offers an abstraction on top of the mechanism used to manage and
update the CMS. This could include GIT, HTTP-based package installs, or Debian packages.
Currently, GIT is the only supported mechanism, but more are to come in the future.

To start, simply see if the repository command is supported in your environment.

me@me.org:~# muse repository
This repository is managed by GIT and is clean

If you environment is not currently supported, you'll receive a message like this:

me@me.org:~# muse repository
Sorry, this command currently only supports setups managed by GIT

 11 / 15

/documentation/current/webdevs/database.migrations

MUSE

To start the update process, use the update task. Depending on your current state, you'll either
see that you're up-to-date, or see what's coming in the next update.

me@me.org:~# muse repository update
The repository is already up-to-date

or...

me@me.org:~# muse repository update
The repository is behind by 747 update(s):
...

Then, to perform the actual update, add the -f flag.

me@me.org:~# muse repository update -f
Updating the repository...complete

If something goes wrong, the update mechanism will automatically roll back to it's state prior to
attempting the update. Then you'll have to go in a manually perform the update depending on
the mechanism.

Spring Cleaning

In addition to performing updates, the repository command also offers some help doing periodic
cleanup. Using the clean command will allow you to prune rollback points and stashes.

me@me.org:~# muse repository clean
Do you want to purge all rollback points except the latest? [y|n] y
Purging rollback points.
Do you want to purge all stashed changes? [y|n] y
Purging repository stash.
Clean up complete. Performed (2/2) cleanup operations available.

Scaffolding

 12 / 15

MUSE

Scaffolding was create to help developers get started quickly. Let's be honest, developers rarely
start from a blank file. We copy something existing and modify. With scaffolding, we give you a
template a pre-fill known values to make this process even easier.

At this time, scaffolding knows how to create:

Commands
Components
Migrations
Tests

So, for example, to create a new component, simply:

me@me.org:~# muse scaffolding create component com_awesome
Creating /var/www/example/core/components/com_awesome/awesome.xml
Creating /var/www/example/core/components/com_awesome/admin/awesome.ph
p
Creating /var/www/example/core/components/com_awesome/admin/controller
s/awesome.php
Creating /var/www/example/core/components/com_awesome/admin/language/e
n-GB/en-GB.com_awesome.ini
Creating /var/www/example/core/components/com_awesome/admin/language/e
n-GB/en-GB.com_awesome.sys.ini
Creating /var/www/example/core/components/com_awesome/admin/views/awes
ome/tmpl/display.php
Creating /var/www/example/core/components/com_awesome/api/controllers/
api.php
Creating /var/www/example/core/components/com_awesome/config/access.xm
l
Creating /var/www/example/core/components/com_awesome/config/config.xm
l
Creating /var/www/example/core/components/com_awesome/models/awesomes.
php
Creating /var/www/example/core/components/com_awesome/site/awesome.php
Creating /var/www/example/core/components/com_awesome/site/assets/css/
awesome.css
Creating /var/www/example/core/components/com_awesome/site/assets/js/a
wesome.js
Creating /var/www/example/core/components/com_awesome/site/controllers
/awesome.php
Creating /var/www/example/core/components/com_awesome/site/language/en-
GB/en-GB.com_awesome.ini
Creating /var/www/example/core/components/com_awesome/site/router.php
Creating /var/www/example/core/components/com_awesome/site/views/aweso
mes/tmpl/display.php
Creating /var/www/example/core/components/com_awesome/site/views/aweso

 13 / 15

MUSE

mes/tmpl/edit.php

As you can see, this automatically generates all of the core files and views you're likely to need.
It also names them appropriately, as well as using the provided component name to even tweak
the contents of these files.

Test

Testing is critical to both deploying a new extension, and updating existing extensions without
too much heartache. To facilitate testing, muse offers a framework and wrapper around the
popular PHP Unit testing infrustucture.

To see the current extensions with tests, run:

me@me.org:~# muse test show
lib_database

Then, to run a specific extensions tests, you can use the run command.

me@me.org:~# muse test run lib_database
PHPUnit 4.6.2 by Sebastian Bergmann and contributors.

...

Time: 2.26 seconds, Memory: 17.5Mb

OK (51 tests, 73 assertions)

User

The final command available at this time is the user command. It offers some advances
administrative functionality for merging and unmerging users.

This command is experimental!

Occasionally, on a hub, one person will create two accounts and not realize it. They later ask

 14 / 15

MUSE

you to merge the accounts and move the contributions from one to the other. This isn't a simple
task, and involves updating many, many references in the database. Fortunately for you, we've
been working on a solution.

me@me.org:~# muse user merge 1042 into 1003
Updating (1) item(s) in jos_collections.object_id
Updating (1) item(s) in jos_collections.created_by
Updating (1) item(s) in jos_collections_items.created_by
Updating (8) item(s) in jos_courses_asset_groups.created_by
Updating (15) item(s) in jos_courses_assets.created_by
Updating (1) item(s) in jos_courses_members.user_id
Updating (2) item(s) in jos_courses_offering_section_dates.created_by
Updating (2) item(s) in jos_courses_units.created_by
Updating (76) item(s) in jos_developer_access_tokens.uidNumber
Updating (1) item(s) in jos_developer_applications.created_by
Updating (1) item(s) in jos_developer_rate_limit.uidNumber
Updating (9) item(s) in jos_users_log_auth.user_id
Ignoring jos_users_password.user_id due to integrity constraint violat
ion
Updating (1) item(s) in jos_users_points.uid
Ignoring jos_xprofiles_bio.uidNumber due to integrity constraint viola
tion
Updating (3) item(s) in jos_xprofiles_tokens.user_id

Then, if needed, you can reverse the merge.

me@me.org:~# muse user unmerge 1042 from 1003
Unmerged (122/122) records successfully!

Powered by TCPDF (www.tcpdf.org)

 15 / 15

http://www.tcpdf.org

