ACCESSING OUTSIDE COMPUTING RESOURCES

Accessing Outside Computing Resources
Overview

Tools are hosted within a "tool session” running within the hub environment. The tool session
supports the graphical interface, which helps the user set up the problem and visualize results.
If the underlying calculation is fairly light weight (e.g., runs in a few minutes or less), then it can
run right within the same tool session. But if the job is more demanding, it can be shipped off to
another machine via the "submit” command, leaving the tool session host less taxed and more
responsive.

This chapter describes the "submit" command, showing how it can be used at the command line
within a workspace and also within Rappture-based tools.

ACCESSING OUTSIDE COMPUTING RESOURCES

Submit Command
Overview

submit takes a user command and executes it remotely. The objective is to allow the user to
issue a command in the same manner as a locally executed command. Multiple submission
mechanisms are available for run dissemination. A set of steps are executed for each run
submission:

¢ Destination site is selected

e A wrapper script is generated for remote execution

¢ |f needed a batch system description file is generated.

¢ |nput files for a run are gathered and transferred to the remote site. Transferred files
include the wrapper and batch description scripts.

e The wrapper script is executed remotely.

¢ Progress of the remote run is monitored until completion.

e QOutput files from the run are returned to the dissemination point.

Command Syntax

submit command options can be determined by using the help parameter of the submit
command.

$ submit --help
Usage: submt [options]

Opti ons:

-h, --help Report command usage. Optionally request |isti
ng of

managers, tools, venues, or exanples.

-1, --local Execute command | ocally

--status Report status for runs executing renotely.

-k, --kill Kill runs executing renotely.

--venueSt at us Report venue st atus.

-V, --venue Renote job destination

-i, --inputfile I nput file

-p, --paraneters Par anet er sweep vari abl es. See exanpl es.

-d, --data Paranetric variable data - csv fornat

-s SEPARATOR, --separ at or =SEPARATOR
Par anet er sweep variable |ist separator
-n NCPUS, --nCpus=NCPUS
Nunber of processors for MPI execution
-N PPN, --ppn=PPN Nunmber of processors/node for MPlI execution

ACCESSING OUTSIDE COMPUTING RESOURCES

--stri pes=NSTRI PES Nunmber of parallel |ocal jobs when doing param
etric
sweep
-w WALLTI ME, --wal |l Ti mre=WALLTI ME
Estimated wal Il ti me hh: mm ss or m nutes
-e, --env Var i abl e=val ue
- - r unNane=RUNNAME Name used for directories and files created du
ring the
run. Restricted to al phanuneric characters
-m --manager Mul ti processor job manager
-r NREDUNDANT, - -redundancy=NREDUNDANT
Nunmber of identical sinulations to execute in

par al | el
-M --netrics Report resource usage on exit
--detach Detach client after |aunching run
--attach=ATTACH D Attach to previously detached started server
-W --wait Wait for reduced job | oad before subm ssion
-Q --quota Enforce | ocal user quota on renote execution h
ost
-qg, --noquota Do not enforce | ocal user quota on renpte exec
ution
host
--tail Stdout Periodically report tail of stdout file.
--tail Stderr Periodically report tail of stderr file.
--tail Periodically report tail of application file.
--progress Show progress net hod. Choices are auto, curses
submt, text, pegasus, or silent.
--asynchronous Asynchronous sinulation - results will not be
returned

Additional information is available by requesting user specific lists of choices for some
command options. The available option lists are generated for a user based on configured
restrictions and availability. The values listed here are for example only and may not be
available on all HUBs.

$ submit --help tools

Currently avail able TOOLs are:
| amps- 03Mar 20- par al | el
| ammps- 03Mar 20- seri al
| ammps- 05Junl9- paral | el
| ammps- 05Junl9- seri al

ACCESSING OUTSIDE COMPUTING RESOURCES

| ammps- 11Augl7- paral | el
| ammps- 11Augl7-seri al
| ammps- 22Augl8- par al | el
| ammps- 22Augl18- seri al
| amps- 31Mar 17- par al | el
| ammps- 31Mar 17- seri al

$ submit --help venues

Currently avail abl e VENUES ar e:
OSG
br own
datalimted@rown
ncn- hub@r own
st andby @r own

$ submit --help managers

Currently avail abl e MANAGERs ar e:
| ammps- 03Mar 20_npi
| amps- 03Mar 20_seri al
| ammps- 05Junl9 npi
| amps-05Junl9 seri al
| ammps- 11Augl7_npi
| ammps- 11Augl7_seri al
| ammps- 22Aug18_npi
| amps- 22Augl8 seri al
| ammps- 31Mar 17_np
| amps- 31Mar 17_seri al
npi
npi ch
npi run
par al | el
seri al

Examples of how to use the submit command to execute parameter sweeps are provided by
asking for help on examples.

$ submit --help exanples
Usage: submt [options]

Opt i ons:
-h, --help Report command usage. Optionally request |isti

ACCESSING OUTSIDE COMPUTING RESOURCES

ng of
-1, --local
--status
-k, --kill
--venuest at us
-V, --venue
-i, --inputfile
-p, --paraneters
-d, --data
- s SEPARATOR,

managers, tools, venues, or exanples.
Execute command | ocal ly

Report status for runs executing renotely.
Kill runs executing renotely.

Report venue status.

Renote job destination

I nput file

Par anet er sweep vari abl es. See exanpl es.
Paranetric variable data - csv fornat

- - separ at or =SEPARATOR

Par anet er sweep variable |ist separator

-n NCPUS, --nCpus=NCPUS

-N PPN, --ppn=PPN
--stri pes=NSTRI PES

etric

Nunber of processors for MPI execution
Nunmber of processors/node for MPlI execution
Nunber of parallel |ocal jobs when doing param

sweep

-w VALLTI ME, --wal | Ti me=WALLTI ME

-e, --env

- - r unName=RUNNAME

ring the

-m --nmanager
- NREDUNDANT,

par al | el
-M --netrics
--det ach
--attach=ATTACH D
-W --wait
-Q --quota
ost
-q, --nhoquota
ution
--tail Stdout
--tail Stderr
--tail
--progress

--asynchronous
returned

Estimated wall ti me hh: nm ss or m nutes
Vari abl e=val ue
Nanme used for directories and files created du

run. Restricted to al phanunmeric characters
Mul ti processor job manager

- - r edundancy=NREDUNDANT

Nunber of identical sinulations to execute in

Report resource usage on exit

Detach client after |aunching run

Attach to previously detached started server
Wait for reduced job | oad before subm ssion
Enforce | ocal user quota on renote execution h

Do not enforce | ocal user quota on renote exec

host

Periodically report tail of stdout file.
Periodically report tail of stderr file.
Periodically report tail of application file.
Show progress nethod. Choices are auto, curses

submt, text, pegasus, or silent.
Asynchronous sinulation - results will not be

ACCESSING OUTSIDE COMPUTING RESOURCES

Par anmet er exanpl es:
submt -p @eap=10pf, 100pf, 1uf simexe @i ndeck

Submt 3 jobs. The @i ndeck neans "use the file indeck as a te
npl at e
file." Substitute the values 10pf, 100pf, and 1uf in place of @®ap w
thin the
file. Send off one job for each of the values and bring back the resu
ts.

submit -p @¥th=0:0.2:5 -p @rap=10pf, 100pf, 1uf si mexe @i ndeck

Submit 78 jobs. The parameter @@th goes fromO to 5 in steps
of 0.2,
so there are 26 values for @@th. For each of those val ues, the parane
ter
@xap changes from 10pf to 100pf to 1uf. 26 x 3 = 78 jobs total. Again
@indeck is treated as a tenplate, and the values are substituted in p
| ace of
@wth and @xap in that file.

submt -p parans simexe @i ndeck

In this case, paraneter definitions are taken fromthe file na
med
parans instead of the command line. The file m ght have the foll ow ng
contents:

paranters for ny job subm ssion
paraneter @th=0:0.2:5
paranmeter @@ap = 10pf, 100pf, luf

submt -p "parans; @hunrl- 10; @@ol or=bl ue" job.sh @j ob. data

For someone who | oves syntax and conplexity... The sem colon s
epar at es
the paraneters value into three parts. The first says to | oad paranete
rs from
a file parans. The next part says add an additional paraneter @umth
at goes
from1l to 10. The last part says add an additional paranmeter @@olor w
ith a
single value blue. The paraneters @»um and @&ol or cannot override an
yt hi ng
defined within paranms; they nust be new paraneter nanes.

ACCESSING OUTSIDE COMPUTING RESOURCES

submt -d input.csv simexe @indeck

Takes paraneters fromthe data file input.csv, which nust be

n conmae-

separated value format. The first line of this file nmay contain a ser
es of

@par am nanmes for each of the colums. Witespace is significant for a
[
val ues entered in the csv file. If it doesn't, then the colums are as
sumed to

be called @i, @2, @B, etc. Each of the remaining |lines represents a

set of

paranmeter values for one job; if there are 100 such lines, there wll
be 100
j obs. For exanple, the file input.csv mght |ook like this:

@t h, @@ap
1.1, 1pf

2.2, 1pf

1.1, 10pf

2. 2, 10pf

Paraneters are substituted as before into tenplate files such
as
@i ndeck.

submt -d input.csv -p "@@opi ng=1el5-1el7 in 30 log" simexe @infile

Takes paraneters fromthe data file input.csv, but also adds a
not her
par anmet er @@opi ng which goes from 1lel5 to 1el7 in 30 points on a | og
scal e.
For each of these points, all values in the data file will be executed

I f the

data file specifies 50 jobs, then this command would run 30 x 50 = 150
0 j obs.

submt -d input.csv -i @extra/data.txt simexe @indeck
In addition to the tenplate indeck file, send al ong another fi
Il e

extra/data.txt with each job, and treat it as a tenplate too.

submt -s / -p @®ddress=23 Main St., Honmet own, | ndi ana/ 42
Br oadway, Honet own, I ndi ana -s , -p @@ol or=red, green, bl ue job.sh @j ob.

ACCESSING OUTSIDE COMPUTING RESOURCES

dat a

Change the separator to slash when defining the addresses, the
n change
back to comma for the @@ol or paraneter and any renai ning argunents. W
e
shoul dn't have to change the separator often, but it m ght cone in han
dy if
t he val ue strings thensel ves have comas.

submt -p @un=1l: 1000 simexe i nput@um
Submt jobs 1,2,3,...,1000. Paraneter nanes such as @@um are

recogni zed not only in tenplate files, but also for argunents on the c
ommand

line. In this case, the nunbers 1,2,3,...,1000 are substituted into th
e file

nane, so the various jobs take their input from"inputl", "input2",
"input 1000".

submit -p @il e=gl ob:indeck* simexe @dile

Look for files matching indeck* and use the |ist of nanmes as t
he
paranmeter @@ile. Those val ues could be substituted into other tenplat
e files,
or used on the command line as in this exanple. Suppose the directory
cont ai ns
files indeckl, indeckl1l0O, and indeck2. The glob option will order the
files in
a natural order: indeckl, indeck2, indeckl0. This exanple would |aunc
h three
j obs using each of those files as input for the job.

subnmit -p @@il e=gl obnat:indeck* simexe @ile
Thi s option has been deprecated. The functionality is now ava

ilable
with the gl ob option.

By specifying a suitable set of command line parameters it is possible to execute commands on
configured remote systems. The simple premise is that a typical command line can be prefaced

ACCESSING OUTSIDE COMPUTING RESOURCES

by submit and its arguments to execute the command remotely.

$ submit -v clusterA echo Hello worl d!
Hel | o worl d!

In this example the echo command is executed on the venue named clusterA where runs are
executed directly on the host. Execution of the same command on a cluster using a batch
scheduler such as SLURM would be done in a similar fashion

$ submit -v clusterB echo Hello worl d!

(2586337) Sinmulation Queued Wed Cct 7 14:45:21 2009
(2586337) Sinmul ation Done Wd Cct 7 14:54:36 2009
$ cat 00577296. st dout

Hel l o worl d!

submit supports an extensible variety of submission mechanisms. HUBzero supported
submission mechanisms are

¢ |ocal - use batch submission mechanisms available directly on the submit host. These
include condorHT, and Pegasus batch queue submission.

¢ ssh - direct use of ssh. Submit manages access to a venue using a common ssh key,
essentially serving as a proxy for the HUB user.

¢ ssh + remote batch submission - use ssh to do batch run submission remotely. Again
methods for common batch schedulers PBS, condorHT, Pegasus, and SLURM are
provided. Additional interfaces to SGE, Load Leveler, BOINC, LSF, and Tapis are also
available.

In addition to single site submission the -r/--redundancy option provides the option to
simultaneously submit runs to multiple remote venues. In such cases the successful completion
of a run at one venue cancels runs at all other venues. If none of the runs are successful results
from one of the runs are returned to the user. Redundant submission is not allowed when
performing parametric sweeps.

A venue for remote execution is selected in one of the following ways, listed in order of
precedence:

Execute the command within the user tool session, -l/--local option

User specified on the command line with -v/--venue option.

Randomly selected from remote sites associated with pre-staged application.
Select randomly from all configured sites

Venues that do not meet the resource requirements of the run request are not considered.

ACCESSING OUTSIDE COMPUTING RESOURCES

Venues are typically configured with limits on the number of cores, walltime, or core-hours.

Any files specified by the user plus internally generated scripts are packed into a tarball for
delivery to the remote site. Individual files or entire directory trees may be listed as command
inputs using the -i/--inputfile option. In addition, command arguments that exist as files or
directories will be packed into the tarball. If using ssh based submission mechanisms the tarball
is transferred using scp.

The job wrapper script is executed remotely either directly or submitted to a batch queue. The
job is subject to all remote queuing restrictions and idiosyncrasies.

Remote batch jobs are monitored for progress. Methods appropriate to the batch queuing
system are used to check job status at a configurable frequency. A typical frequency is on the
order one minute. Job status changes are reported to the user. The maximum time between
reports to the user is set on the order of five minutes even in the absence of change. The job
status is used to detect job completion.

The same methods used to transfer input files are applied in reverse to retrieve output files. Any
files and directories created or modified by the application are be retrieved. A tarball is retrieved
and expanded to the home base directory. It is up to the user to avoid the overwriting of files.

In addition to the application generated output files additional files are generated in the course
of remote run execution. Some of these files are for internal bookkeeping and are consumed by
submit, a few files however remain in the home base directory. The remaining files include
RUNID.stdout and RUNID.stderr, it is also possible that a second set of standard output/error
files will exist containing the output from the batch job submission script. By default, RUNID
represents unique job identifier assigned by submit. If preferred a user can specify a different
RUNID using the --runName command argument.

ACCESSING OUTSIDE COMPUTING RESOURCES

Pegasus Workflow Submission
Overview

Functionality has been included in submit to support workflow management using Pegasus.
Two use cases are available: automatic workflow generation for parametric sweeps on one or
more variables, or user constructed workflows. In both instances submit is used to configure
access to one or more computational resources eliminating the need for a user to supply a site
catalog thereby simplifying use of the workflow management system.

Parametric Sweeps

submit command options -p/--parameters and -d/--data provide support for specifying parameter
sweeps in a compact general way. The user is relieved of the chore of generating entire sets of
input files and command arguments comprising a parameter sweep. Substitutable parameters
are declared on the submit command line. Values of these parameters can then be
systematically substituted into data files or application command line parameters. submit
performs the necessary substitutions to cover all parameter combinations. Each combination of
parameters is abstractly represented as a node in a workflow and concretely executed as a job
on the designated computational resource. A simple curses interface is provided to monitor
progress of the simulation run.

User Constructed Workflows

Parameter sweeps are represented as a simple workflow consisting of many individual
independent nodes. That is data is not shared between nodes or jobs in the run. There are
cases where this simple approach is not sufficient to describe a workflow required to achieve a
developer's or user's objective. Under these circumstances a developer may create a workflow
and build an application around it where the user supplies values for selected inputs. In such
cases the Pegasus API's may be used to generate the abstract workflow description in the form
of a dax file. The dax file can then executed by a simple submit command.

submt pegasus-plan --dax daxFile

In cases where more than one venue is capable of executing Pegasus runs a specific venue
can be requested on the command line, otherwise submit will choose a venue at random.

http://pegasus.isi.edu
http://pegasus.isi.edu/documentation

ACCESSING OUTSIDE COMPUTING RESOURCES

submt -v DiaGid pegasus-plan --dax daxFile

There are several additional options to pegasus-plan command that are supplied by submit. A
few of the command options may be provided on the command line. submit reserves the option
to silently ignore options as it sees fit.

In addition to remote execution of Pegasus runs it is also possible to do the execution locally
with in the tool session. Simply use the submit -I/--local option.

submt --local pegasus-plan --dax daxFile

The use command can be employed to put pegasus-plan and all other Pegasus commands in
the PATH environment variable. In additional to setting PATH, other environment variables are
set allowing use of the Python and java dax generation API's.

ACCESSING OUTSIDE COMPUTING RESOURCES

Rappture Integration with Submit
Overview

It is possible to use the submit command to execute simulation jobs generated by Rappture
interfaces remotely. A common approach is to create a shell script which can exec'd or forked
from an application wrapper script. This approach has been applied to TCL, Python, Octave,
MATLAB, and Perl wrapper scripts. To avoid consumption of large quantities of remote
resources it is imperative that the submit command be terminated when directed to do so by the
application user (Abort button).

TCL Wrapper Script

submit can be called from a TCL Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt. Setting execctl to 1 will
terminate the process and any child processes.

package require Rappture
Rappture::signal SIGHUP sHUP {
puts "Caught SI GHUP"
set execctl 1
}
Rappture: :signal SI GTERM sTERM {
puts "Caught SI GTERM
set execctl 1

A second code segment is used to build an executable script that can executed using
Rappture::exec. The trap statement will catch the interrupt thrown when the wrapper script
execution is Aborted. Putting the submit command in the background allows for the possibility of
issuing multiple submit commands from the script. The wait statement forces the shell script to
wait for all submit commands to terminate before exiting.

set subm t Script "#!/bin/sh\\n\\n"

append subm tScript "trap cleanup HUP INT QU T ABRT TERM\n\\n"
append subm tScript "cleanup()\\n"

append subm tScript "{\\n"

append subm tScript " kill -TERM "jobs -p \\n"

ACCESSING OUTSIDE COMPUTING RESOURCES

append subm tScript " exit 1\\n"
append subm tScript "}\\n\\n"

append subm tScript "cd [pwd]\\n"
append subm tScript "submit -v cluster -n $cores -w $wal | time\\\\\\

append subm tScript " COVWWAND ARGUMENTS &\ \ n"
append subm tScript "sleep 5\\n"
append subm tScript "wait\\n"

set submtScriptPath [file join [pwd] submt_script.sh]
set fid [open $subm tScriptPath w

puts $fid $submitScript

close $fid

file attributes $subm tScriptPath -permn ssions 00755

The standard method for wrapper script execution of commands can now be used. This will
stream the output from all submit commands contained in submit_script.sh to the GUI display.
The same output will be retained in the variable out.

set status [catch {Rappture::exec $subm tScri ptPath} out]

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

set out2 ""
foreach errfile [glob -noconmplain *.stderr] {
if [file size S$errfile] {
if {[catch {open S$errfile r} fid] == 0} {
set info [read $fid]
cl ose $fid
append out 2 $info

}
}
file delete -force Serrfile
}
foreach outfile [glob -noconplain *.stdout] {
if [file size $outfile] {
if {[catch {open $outfile r} fid] == 0} {
set info [read $fid]
cl ose $fid
append out2 $info

ACCESSING OUTSIDE COMPUTING RESOURCES

}

file delete -force $outfile

The script file should be removed.

file delete -force $subm t Scri pt Path

The output is presented as the job output log.

$driver put output.log $out?2

All other result processing can proceed as normal.

Python Wrapper Script

submit can be called from a python Rappture wrapper script for remote batch job submission.
An example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to import some predefined functions that manage typical
aspects of remote submission. An important aspect is the handling of user interruption via the
Abort button.

i mport os
from Rappture.tools inport executeCommand as Rappt ur eExec

A second code segment is used to build a list containing an executable submit command to be
executed using RapptureExec. RapptureExec will trap signals initiated by pressing the Abort
button. The submit command must terminate before RapptureExec exits and returns control to
the application wrapper script.

subm t Command = ["submt","-v", venue, "-n", cores,
"-w', wal | ti me, COMVAND, ARGUVENTS]
exi t St at us, st dQut put, stderror = Rappt ur eExec(subm t Command)

ACCESSING OUTSIDE COMPUTING RESOURCES

The standard method for wrapper script execution of commands can now be used. This will
stream the output from the submit command to the GUI display. The same output will be
retained in the variable stdOutput.

The submit command creates files to hold COMMAND standard output and standard error. By
default the file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered as follows.

reStdout = re.conpile(".*.stdout$")

reStderr = re.conpile(".*.stderr$")

out2 = ""

errFiles = filter(reStderr.search,os.listdir(os.getpwd()))
if errFiles I'=1]:

for errFile in errFiles:

errFilePath = os.path.join(os.getpwd(),errFile)
if os.path.getsize(errFilePath) > O:

f = open(errFilePath,'r")

out Fil eLines = f.readlines()

f.close()

stderror = "'.join(outFileLines)

out2 +='n' + stderror
os.renove(errFil ePat h)

outFiles = filter(reStdout.search,os.listdir(os.getpwd()))
if outFiles I'=1]:
for outFile in outFiles:
out Fil ePath = os. path.join(os.getpwd(),outFile)
if os.path.getsize(outFilePath) > O:
f = open(outFilePath, 'r")
out Fil eLines = f.readlines()
f.close()
stdoutput = ''.join(outFileLines)
out2 += 'n' + stdout put
0os. renove(out Fi | ePat h)

The output is presented as the job output log.

l'ib.put("output.log”, out2, append=1)

ACCESSING OUTSIDE COMPUTING RESOURCES

All other result processing can proceed as normal.

Perl Wrapper

submit can be called from a perl Rappture wrapper script for remote batch job submission. An
example of what code to insert in the wrapper script is detailed here.

An initial code segment is required to catch the Abort button interrupt.
use Rappture

ny $ChildPID = 0;

sub trapSig {

print "Signal @ trapped\\n";
if($ChildPID !'= 0) {

kill "TERM, $Chil dPI D
exit 1;
}
}
$SIG TERM = \ & rapSig;
$SIGHUP} = \&rapSig;
$SIGINT} = \&rapSig;

A second code segment is used to build an executable script that can executed using
Rappture.tools.getCommandOutput. The trap statement will catch the interrupt thrown when the
wrapper script execution is Aborted. The wait statement forces the shell script to wait for the
submit command to terminate before exiting.

$SCRPT = "subm t_app. sh";

open(FI D, ">$SCRPT") ;

print FID "#!/bin/sh\\n";

print FID "\\n";

print FID "trap cleanup HUP INT QU T ABRT TERM\n\\n";

ACCESSING OUTSIDE COMPUTING RESOURCES

print FID "cleanup()\\n";

print FID "{\\n";

print FID" kill -s TERM "jobs -p \\n";
print FID" exit 1\\n";

print FID "}\\n\\n";

print FID "submit -v cluster -n $cores -w $wal | Ti mre COVWAND ARGUVMENTS
&\ n";

print FID "wait %\\n";

print FID "exitStatus=\\$?\\n";

print FID "exit \\$exitStatus\\n";

cl ose(FID);

chrmod 0775, $SCRPT;

The standard fork and exec method for wrapper script execution of commands can now be
used. Using this approach does not allow streaming of the command outputs.

i f (! defined($ChildPID = fork())) {
die "cannot fork: $'";
} elsif ($ChildPID == 0) {
exec("./$SCRPT") or die "cannot exec $SCRPT: $!";
exit(0);
} else {
wai t pi d($Chi | dPI D, 0) ;
}

Each submit command creates files to hold COMMAND standard output and standard error.
The file names are of the form JOBID.stdout and JOBID.stderr, where JOBID is an 8 digit
number. These results can be gathered with standard perl commands for file matching, reading,
etc. All other result processing can proceed as normal.

Octave/MATLAB Script

submit can be called from a Octave or MATLAB Rappture wrapper script for remote batch job
submission. An example of what code to insert in the wrapper script is detailed here.

-- Function: [EXITSTATUS] = rpExec(COMMAND, STREAMOUTPUT)
-- Function: [EXI TSTATUS, STDOUTPUT] = rpExec(COVMAND, STREAMOUTPUT)
-- Function: [EXITSTATUS, STDOUTPUT, STDERROR] = rpExec(COMVAND, STREA

ACCESSING OUTSIDE COMPUTING RESOURCES

MOUTPUT)

Execute COVWAND with the ability to term nate the process upon
reception of a interrupt, hangup, or term nate signal. Doing so
allows the process to term nated when the Rappture "Abort" button
is pressed. COWAND should contain a set of strings that conpris

e
the command to be executed. |f STREAMOUTPUT equals 1 the stdou
and stderr from COWAND are piped back to the current process
stdout and stderr descriptors as COWAND executes.
On out put EXI TSTATUS i ndi cates whether or not an error occurred.
EXI TSTATUS equals O indicates that no error occurred. |If STDOUTPU
T
is supplied it will contain a copy of stdout from COMVAND. 1In th
e

same manner if STDERROR is supplied it will contain a copy of
stderr from COMVAND

Exanpl e:

[exit Status, stdQut put,stdError] = rpExec({"submt","-wall Tine","3
0", "l ammps- 12Febl4-serial","-in","I np.in"}, 1);

http://www.tcpdf.org

