COMPONENTS

Components
Overview

The largest and most complex of the extension types, a component is in fact a separate
application. You can think of a component as something that has its own functionality, its own
database tables and its own presentation. So if you install a component, you add an application
to your website. Examples of components are a forum, a blog, a community system, a photo
gallery, etc. You could think of all of these as being a separate application. Everyone of these
would make perfectly sense as a stand-alone system. A component will be shown in the main
part of your website and only one component will be shown. A menu is then in fact nothing more
then a switch between different components.

Throughout these articles, we will be using {ComponentName} to represent the name of a
component that is variable, meaning the actual component name is chosen by the developer.
Notice also that case is important. {componentname} will refer to the lowercase version of
{ComponentName}, eg. "CamelCasedController" -> "camelcasedcontroller”. Similarly,
{ViewName} and {viewname}, {ModelName} and {modelname}, {ControllerName} and
{controllername}.

Examples
Here we have a basic front-end component that simply displays a "Hello, World!" message.

Download: Hello World component

In the com_drwho example component, we demonstrate working with a few simple database
tables. The example shows how to output a listing (with pagination), a form for entering new
items, and saving to the database.

Other examples included are using multiple controllers, using models, handling errors, adding
some security, and pushing assets (e.g., CSS) to the document.

Download: Dr Who front-end (site) component

Download: Dr Who administrator component

Directory Structures & Files

Components follow the Model-View-Controller (MVC) design pattern. This pattern separates the
data gathering (Model), presentation (View) and user interaction (Controller) activities of a

/app/site/documentation/1-2-2/examples/com_hello.zip
/app/site/documentation/1-3-0/examples/com_drwho-site.zip
/app/site/documentation/1-3-0/examples/com_drwho-admin.zip

COMPONENTS

module. Such separation allows for expanding or revising properties and methods of one
section without requiring additional changes to the other sections.

In its barest state, no database entry or other setup is required to "install" a component. Simply
placing the component into the /components directory will make it available for use. However, if
a component requires the installation of database tables or configuration (detailed in the
config.xml file), then an administrator must install the component using one of the installation
options in the administrative back-end.

Note: Components not installed via one of the installation options or without a database entry in
the #__components table will not appear in the administrative list of available components.

To illustrate the typical component directory structures and files:

/ hubzer o
[adm ni strator
/ conponent s
/ com exanpl e

/ conponent s
/ com exanpl e
[assets
/ css
ljs
/ing
/[controllers
exanpl e. php
/ model s
f 0oo. php
/views
/i ndex
/ t npl
di spl ay. php
di spl ay. xm
exanpl e. php
router. php

In the above example, all component related files and sub-directories are split between the
administrator components and front-end components. In both cases, the files are contained
within directories titled "com_example”. Some directories and files are optional but, for this

example, we've included the most common setup.

The file structure in the administrative portion of the component is exactly the same as in the

COMPONENTS

front side. Note that the view, models, controllers etc. of the front and admin parts are
completely separated, and have nothing to do with each other - the front part and the admin part
can be thought of as two different components! A view in the
/administrator/components/com_example folder may have a counterpart with the same name in
the /components/com_example folder, yet the two views have nothing in common but their
name.

Directory & File Explanation

/com_{componentname}/{componentname}.php
This is the component's main file and entry point for the front-end part.
/com_{componentname}/views

This folder holds the different views for the component.

/com_{componentname}/views/{viewname}
This folder holds the files for the view {ViewName}.
/com_{componentname}/views/{viewname}/tmpl

This folder holds the template files for the view {ViewName}.

[site/views/{viewname}/tmpl/default.php
This is the default template for the view {ViewName}.
/com_{componentname}/models

This folder holds additional models, if needed by the application.

/com_{componentname}/models/{modelname}.php
This file holds the model class {ComponentName}Model{ModelName}. This
class must extend the base class "HubzeroBaseModel". Note that the view
named {ViewName} will by default load a model called {ViewName} if it exists.
Most models are named after the view they are intended to be used with.
/com_{componentname}/controllers

This folder holds additional controllers, if needed by the application.
/com_{componentname}/controllers/{controllername}.php

This file holds the controller class {ComponentName}Controller{ControllerName}.
This class must extend the base class "HubzeroComponentsSiteController”.

Naming Conventions

COMPONENTS

Classes

The model, view and controller files use classes from the framework, HubzeroBaseModel,
HubzeroComponentView and HubzeroComponentSiteController, respectively. Each class is
then extended with a new class specific to the component.

The base controller class for the site is named {ComponentName}Controller. For the
administrative section, an "s" is added to the ComponentName, giving
{ComponentName}sController. Classnames for additional controllers found within the
controllers/ subdirectory are {ComponentName}Controller{ControllerName} for site/ and
{ComponentName}sController{ControllerName} for admin/.

The view class is named {ComponentName}View{ViewName}.

The model class is named {ComponentName}Model{ModelName}. Remember that the
{ModelName} and the {ViewName} should be the same.

Reserved Words
There are reserved words, which can't be used in names of classes and components.

An example is word "view" (in any case) for view class (except "view" that must be second part
of that class name). Because first part of view class nhame is the same as controller class name,
controller class name also can't contain word "view". And because of convension (although
violating of it won't produce an error) controller class name must contain component name, so
component name also can't contain word "view". So components can't be named
"com_reviews", or if thay are, thay must violate naming convention and have different base
controller class name (or have some other hacks).

COMPONENTS

Installation

Installing

See Installing Extensions for details.

Uninstalling

See Uninstalling Extensions for details.

/documentation/1.3.1/webdevs/extensions.installing
/documentation/1.3.1/webdevs/extensions.uninstalling

COMPONENTS

Manifests
Overview

It is possible to install a component manually by copying the files using an SFTP client and
modifying the database tables. It is more efficient to create a package file in the form on an XML
document that will allow the Joomla! Installer to do this for you. This package file contains a
variety of information:

basic descriptive details about your component (i.e. name), and optionally, a description,
copyright and license information.

a list of files that need to be copied.

optionally, a PHP file that performs additional install and uninstall operations.

optionally, an SQL file which contains database queries that should be executed upon
install/uninstall

Note: All components must be prefixed with com_.

Structure

This XML file just lines out basic information about the component such as the owner, version,
etc. for identification by the installer and then tells the installer which files should be copied and
installed.

A typical component manifest:

<?xm version="1.0" encodi ng="utf-8"7?>
<ext ensi on type="conponent"” version="1.5.0">
<nane>hel | o_wor | d</ nane>

<l-- The following elenents are optional and free of formatting contt
raints -->

<creati onDat e>2007 01 17</creationDate>

<aut hor >John Doe</ aut hor >

<aut hor Emai | >j ohn. doe@xanpl e. or g</ aut hor Emai | >

<aut hor Url >htt p: // ww. exanpl e. or g</ aut hor Ur | >
<copyri ght >Copyri ght 1 nfo</copyright>

<license>Li cense Info</l|icense>

<l-- The version string is recorded in the conponents table -->
<ver si on>Conponent Version String</version>

<l-- The description is optional and defaults to the nanme -->
<descri ption>Description of the conponent ...</description>

<l-- Customlinstall Script to execute -->
<I-- Note: This will be copied fromthe root of the installation pack

COMPONENTS

age to the admnistrator directory automatically -->
<installfile> nstall.eventlist.php</installfile>

<l-- Custom Uninstall Script to execute -->

<I-- Note: This will be copied fromthe root of the installation pack
age to the admnistrator directory automatically -->

<uninstallfile>uninstall.eventlist.php</uninstallfile>

<!-- Install Database Section -->

<install >

<sql >
<file driver="nysqgl" charset="utf8">install.nysqgl.utf8.sql</file>
<file driver="nysqgl "> nstall.nysql.nonutf8.sql</file>

</sql >

</install>

<l-- Uninstall Database Section -->
<uni nstal | >
<sq| >

<file driver="nysqgl" charset="utf8">uninstall.nysql.utf8.sql</file>
<file driver="nysqgl">uninstall.nysql.nonutf8.sql</file>

</sql >

</ uninstall>

<I-- Site Main File Copy Section -->
<files>

<fil enanme>i ndex. ht m </fil ename>
<fil enane>t est. php</fil enane>

<f ol der >vi ews</ f ol der >
</files>

<I-- Site Main Language File Copy Section -->

<| anguages>

<l anguage tag="en- B">en- . com test.ini</|anguage>
<l anguage tag="de-DE">de-DE. com test.ini</I|anguage>
<l anguage tag="nl-NL">nl-NL.com test.ini</I|anguage>
</ | anguages>

<I-- Site Main Media File Copy Section -->
<nmedi a destination="comtest">

<fil enanme>i mage. png</fil enane>

<fil enane>fl ash. swf </ fil enane>

</ medi a>

<adm ni strati on>
<l-- Administration Menu Section -->

COMPONENTS

<menu i ng="conponents/comtest/assets/test-16. png">Event Li st </ nenu>

<submenu>

<I-- Note that all & must be escaped to & for the file to be valid
XM. and be parsed by the installer -->

<menu | ink="opti on=com hel | owor | d&t ask=hel | o&who=wor | d">Hel l o Worl d
I </ menu>

<I-- Instead of link you can specify individual link attributes -->

<menu i ng="icon" task="hell 0" controller="z" view="a" |ayout="b" su
b="c">Hel | o Agai n! </ nenu>

<menu view="test" |ayout="fo00">Testing Foo Layout </ nenu>

</ submenu>

<l-- Administration Main File Copy Section -->

<I-- Note the folder attribute: This attribute describes the folder
to copy FROMin the package to install therefore files copied
in this section are copied from/admn/ in the package -->

<files fol der="adm n">

<fil enane>i ndex. htm </ fil enane>

<fil enane>adm n. test. php</fil enane>

</[files>

<l-- Adm nistration Language File Copy Section -->
<| anguages fol der="adm n">

<l anguage tag="en- B">en- . com test.ini</|anguage>
<l anguage tag="de-DE">de-DE. com test.ini</I|anguage>
<l anguage tag="nl-NL">nl-NL.com test.ini</I|anguage>
</ | anguages>

<l-- Adm nistration Main Media File Copy Section -->
<nmedi a fol der="adm n" destination="comtest">
<fil enane>adm n-i mage. png</fil enane>
<fil enane>adm n-fl ash. swf</fil enane>
</ medi a>
</ adm ni strati on>
</ ext ensi on>

COMPONENTS

Entry Point
Overview

The CMS is always accessed through a single point of entry: index.php for the Site Application
or administrator/index.php for the Administrator Application. The application will then load the
required component, based on the value of 'option’ in the URL or in the POST data. For our
component, the URL would be:

For search engine friendly URLs:
/hello

For non- SEF URLs:
/i ndex. php?opti on=com hel | o

This will load our main file, which can be seen as the single point of entry for our component:
components/com_hello/hello.php.

Implementation

<?php
/1 No direct access
defined(' _JEXEC) or die('Restricted access');

[/l Get the requested controller
$control | erName = JRequest::getCrd(' controller', JRequest::getCrd('vie
W, 'one'));

/'l Ensure the controller exists
if ('file_exists(JPATH COWPONENT . DS . 'controllers' . DS . $controll
erNane . '.php'))

{

$control | erName = 'one';
}
requi re_once(JPATH COVMPONENT . DS . 'controllers' . DS . $controllerNa
me . '.php');
$control | erName = ' Exanpl eController' . ucfirst(strtol ower($controller
Nane)) ;

/! Instantiate controller
$control l er = new $controll erName();

COMPONENTS

/1l Execute whatever task(s)
$control | er->execute();

/'l Redirect as needed
$control ler->redirect();

The first statement is a security check.

JPATH_COMPONENT is the absolute path to the current component, in our case
components/com_hello. If you specifically need either the Site component or the Administrator
component, you can use JPATH_COMPONENT _SITE or
JPATH_COMPONENT_ADMINISTRATOR.

DS is the directory separator of your system: either '/ or ". This is automatically set by the
framework so the developer doesn't have to worry about developing different versions for
different server OSs. The 'DS' constant should always be used when referring to files on the
local server.

First we look for a requested controller name. There is a default set in case none has been
passed or if the requested controller is not found. With the controller name, we build the class
name for the controller following the standard camel-cased pattern of {Component
name}Controller{Controller name}

After the controller is created, we instruct the controller to execute the task, as defined in the
URL: index.php?option=com_hello&task=sometask. If no task is set, the default task 'display’
will be assumed. When display is used, the 'view' variable will decide what will be displayed.

Other common tasks are save, edit, new...

The controller might decide to redirect the page, usually after a task like 'save' has been
completed. This last statement takes care of the actual redirection.

The main entry point (hello.php) essentially passes control to the controller, which handles
performing the task that was specified in the request.

Note that we don't use a closing php tag in this file: ?>. The reason for this is that we will not
have any unwanted whitespace in the output code. This is default practice and will be used for
all php-only files.

COMPONENTS

Controllers
Overview

The controller is responsible for responding to user actions. In the case of a web application, a
user action is (generally) a page request. The controller will determine what request is being
made by the user and respond appropriately by triggering the model to manipulate the data
appropriately and passing the model into the view. The controller does not display the data in
the model, it only triggers methods in the model which modify the data, and then pass the model
into the view which displays the data.

Creating the Front-end Controller

<?php
/1 No direct access
defined(' _JEXEC) or die('Restricted access');

cl ass Hel | oControl |l er One extends Hubzer oConponent SiteController

{
public function displayTask()

{
/1l Pass the view any data it may need
$t hi s->view>greeting = "Hello, Wrld!';

/1l Set any errors
if ($this->this->getError())
{

foreach ($this->getErrors() as $error)

{

$vi ew >set Error($error);

}
}

/1 Qutput the HTM
$t hi s- >vi ew >di spl ay();
}
}

The first, and most important part to note is that we're extending
HubzeroComponentSiteController which brings several tools and some auto-setup for us.

COMPONENTS

Note: HubzeroComponentSiteController extends HubzeroBaseObject, so all its methods and
properties are available.

In the execute() method, the list of available tasks is built from only methods that are 1) public
and 2) end in "Task". When calling a task, the "Task" suffix should be left off. For example:

/1l This route
JRout e:: _('index.php?opti on=com exanpl e&t ask=ot her');

/] Refers to

public function otherTask()

{
o

If no task is supplied, the controller will default to a task of "display”. The default task can be set
in the controller:

<?php

/1 No direct access

defined(' _JEXEC) or die('Restricted access');
xi mport (' Hubzero_Controller');

cl ass Hell oControl | erOne extends HubzeroConponent SiteController

{
public function execute()
{
/'l Set the default task
$t hi s->regi sterTask(' __default', 'nydefault');

/'l Set the nethod to execute for other tasks

/1 The follow ng can be called by task=delete and will execute the r
enoveTask net hod

$t hi s->regi sterTask(' delete', 'renmove'); [/ (task, nethod nane);

parent::execute();

}

COMPONENTS

Each controller extending HubzeroComponentSiteController will have the following properties
available:

e _option - String, component name (e.g., com_example)
_controller - String, controller name

view - Object (JView)

config - Object (JRegistry), component config

database - Object (JDatabase)

juser - Object (JUser)

cl ass Hel | oControl |l erOne extends Hubzer oConponent SiteController

{
public function displayTask()

{
$t hi s->vi ew >user Nane = $t hi s->j user->get (' nane');
$t hi s->vi ew >di spl ay();
}
}

Auto-generation of views

The HubzeroComponentSiteController automatically instantiates a new
HubzeroComponentView object for each task and assigns the component ($option) and
controller ($controller) names as properties for use in your view. Controller names map to view
directory and task names directly map to view names.

/ { conponent }

/views
/one (controller nane)
[t npl
/ di spl ay. php

/ renove. php

Example usage within a view:

<p>This is conponent <?php echo $this->option; ?> using controller: <?
php echo $this->controller; ?></p>

COMPONENTS

Changing view layout

As mentioned above, the view object is auto-generated with the same layout as the current
$task. There are times, however, when you may want to use a different layout or are executing
a task after directing through from a previous task (example: saveTask encountering an error
and falling through to the editTask to display the edit form with error message). The layout can
easily be switched with the setLayout method.

[{conponent }
/vi ews
/one (controller nane)
[t npl
/ di spl ay. php
/[wor | d. php

cl ass Hel | oControl |l erOne extends Hubzer oConponent SiteController

{
public function displayTask()

{
/[l Set the layout to 'world. php'

$t hi s->vi ew >set Layout (' world');

/1 Qutput the HTM
$t hi s->vi ew >di spl ay();
}
}

Any assigned data or vars to the view will not be effected.

Creating the Admin Controller

Administrator component controls are built the same and function the same as the Front-end
(site) controllers with one key difference: they extends HubzeroComponentAdminController.

<?php

COMPONENTS

/'l No direct access
defined(' _JEXEC) or die('Restricted access');

cl ass Exanpl eControl | er One ext ends Hubzer oConponent Adm nControl | er
{

}

COMPONENTS

Helpers

Overview

A helper class is a class filled with static methods and is usually used to isolate a "useful”
algorithm. They are used to assist in providing some functionality, though that functionality isn't

the main goal of the application. They're also used to reduce the amount of redundancy in your
code.

Implementation

Helper classes are stored in the helper sub-directory of your component directory. Naming
convention typically follows a pattern of {ComponentName)Helper(HelperName}. Therefore, our
helper class is called HelloHelperOutput.

Here's our com_hello/helpers/output.php helper class:

<?php
// No direct access

defined(' _JEXEC) or die('Restricted access');

/**
* Hello World Conponent Hel per
*/

cl ass Hel | oHel per Cut put

{
/~k~k

* Method to nmake all text upper case
* @ccess public
*/
public static function shout($txt="")
{
return strToUpper ($txt)."'!";
}
}

We have one method in this class that takes all strings passed to it and returns them uppercase
with an exclamation point attached to the end. To use this helper, we do the following:

COMPONENTS

cl ass Hell oControllerHell o extends Hubzer oConponent SiteController

{
public function display()

{
i ncl ude_once(JPATH_COVPONENT. DS. ' hel pers' . DS. "' out put. php');

$greeting = Hell oHel perQut put::shout("Hello Wrld");
$this->set('greeting', $greeting);

$t hi s->vi ew >di spl ay();
}
}

COMPONENTS

Models
Overview

The concept of model gets its name because this class is intended to represent (or ‘'model’)
some entity.

Creating A Model

All HUBzero models extend the HubzeroBaseModel class. The haming convention for models in
the framework is that the class nhame starts with the name of the component, followed by
'model’, followed by the model name. Therefore, our model class is called HelloModelHello.

<?php
/1 No direct access
defined(' _JEXEC) or die('Restricted access');

/**
* Hell o Model
*/
cl ass Hel | oMbdel Hel | o ext ends Hubzer oBaseMbdel
{
/**

* Gets the greeting
* @eturn string The greeting to be displayed to the user

*/
public function getGeeting()
{

return 'Hello, World!";
}

You will notice a lack of include, require, or import calls. Hubzero classes are autoloaded and
map to files located in the /libraries/Hubzero directory. See more on naming conventions.

Using A Model

Here's an example of using a model with our Hello component (com_hello).

<?php

/documentation/1.3.1/webdevs/codingconventions.phpnamingconventions

COMPONENTS

/'l No direct access
defined(' _JEXEC) or die('Restricted access');

/**
* HTM. View class for the Hell owrld Conponent
*/
cl ass Hel | oVi ewHel | o ext ends Hubzer oConponent SiteControl | er

{
public function display()

{
$nmodel = new Hel | oMbdel Hel | o() ;

$greeting = $nodel - >get Greeti ng();

$this->set('greeting', $greeting)
->di splay();

COMPONENTS

Languages
Setup

Language files are setup as key/value pairs. A key is used within the component's code and the
translator retrieves the associated string for the given language. The following code is an extract
from a typical component language file.

; Module - Hellow Wrld (en-US)

COM HELLOAORLD LABEL_USER COUNT = "User Count"

COM HELLOWORLD DESC USER COUNT = "The nunber of users to display”
COM_HELLOWORLD RANDOM USERS = "Random Users for Hello World"

COM HELLOWORLD USER LABEL = "% is a randonly sel ected user™

Translation keys can be upper or lowercase or a mix of the two and may contain underscores
but no spaces. HUBzero convention is to have keys all uppercase with words separated by
underscores, following a pattern of COM_{ComponentName} {Text} for naming. Adhering to
this naming convention is not required but is strongly recommended as it can help avoid
potential translation collisions.

See the Languages overview for details.

Translating Text
Below is an example of accessing the translate helper:

<p><?php echo JText::_ ("COM EXAMPLE_MY_LINE"); ?></p>

JText::_is used for simple strings.
JText::sprintf is used for strings that require dynamic data passed to them for variable
replacement.

Strings or keys not found in the current translation file will output as is.

See the Languages overview for details.

/documentation/1.3.1/webdevs/extensions.languages
/documentation/1.3.1/webdevs/extensions.languages

COMPONENTS

Views
Directory Structures & Files

Views are written in PHP and HTML and have a .php file extension. View scripts are placed in
/com_{componentname}/views/, where they are further categorized by the /{viewname}/tmpl.
Within these subdirectories, you will then find and create view scripts that correspond to each
controller action exposed; in the default case, we have the view script default.php.

/ hubzer o
/ conponent s
/ com { conponent nane}
/vi ews
[{vi ewnane}
[t npl
def aul t. php

Overriding module and component presentation in templates is further explained in the
Templates: Overrides section.

Creating A View

The task of the view is very simple: It retrieves the data to be displayed and pushes it into the
template.

/1l Instantiate a new vi ew

$vi ew = new Hubzer oConponent Vi ew(ar r ay(
"nane'’ => $this-> controller,
‘layout' =>"'foo

));

/'l Assign data to the view
$vi ew >greetings = 'Hello';

/! Echo out the results
$vi ew >di spl ay();

In the above example, the view constructor is passed an array of options. The two most

/documentation/1.3.1/webdevs/templates.overrides

COMPONENTS

important options are listed: name, which is the folder to look for the view file in and will typically
correspond to the current controller's name, and layout, which is the specific view file to load. If
no layout is specified, the layout is typically auto-assigned to the current task name. So, if the
controller in the example code is one, the directory structure would look as follow:

/ com exanpl e
/views
/ one
[t npl
/ f 0o. php

Method Chaining
All Hubzero view objects support method chaining for brevity and ease of use.

/1l Instantiate a new vi ew

$vi ew = new Hubzer oConponent Vi ewm array(
‘name’ => $this-> controller,
‘layout' => "'foo'

));

$vi ew >set (' greetings', 'Hello")
->set Layout (' bar")
->di splay();

COMPONENTS

Routing
Overview

All components can be accessed through a query string by using the option parameter which
will equate to the name of the component. For example, to access the "Blog" component, you
could type http://yourhub.org/index.php?option=com_blog.

When SEF URLs are being employed, the first portion after the site name will almost always be
the name of a component. For the URL http://yourhub.org/blog, the first portion after the slash
translates to the component com_blog. If a matching component cannot be found, routing will
attempt to match against an article section, category, and/or page alias.

While not required, most components will have more detailed routing instructions that allow SEF
URLSs to be made from and converted back into query strings that pass necessary data to the
component. This is done by the inclusion of a file called router.php.

The Router

Every router.php file has two methods: {ComponentName}BuildRoute() which takes a query
string and turns it into a SEF URL and {ComponentName}ParseRoute() which deconstructs a
SEF URL back into a query string to be passed to the component.

functi on Exanpl eBui | dRout e(&query)
{

$segnents = array();

if (!empty($query['task']))
{
$segment s[] = $query['task'];
unset ($query[' task']);
}
if (tempty($query['id']))
{
$segnent s[] = Squery['id'];
unset ($query['id]);
}
if (lenmpty($query['format']))
{
$segnments[] = $query[' format'];
unset ($query[' format']);

}

return $segnents;

COMPONENTS

}

functi on Exanpl ePar seRout e($segnent s)

{

$vars = array();

if (enmpty($segnents))
{

return $vars;

i}f (isset($segnents[0]))
{$vars['task'] = $segnent s[0] ;
i}f (i sset($segnments[1]))
{$vars[' id] = $segnents[1];

?f (i sset ($segments[2]))
{$vars['forrrat'] = $segnent s[2] ;

}

return $vars;

{ComponentName}BuildRoute()

This method is called when using JRoute::_(). JRoute::_() passes the query string (minus the
option={componentname} portion) to the method which returns an array containing the
necessary portions of the URL to be constructed in the order they need to appear in the final
SEF URL.

/1 $query = 'task=vi ew& d=123&f or mat =r ss'
function Exanpl eBui | dRout e(&query)
{

$segnents = array();

if (Yenpty($query['task']))

{
$segnment s[] = $query['task'];
unset ($query['task']);

}

COMPONENTS

if (lenpty($query['id']))

{
$segnents[] = Squery['id'];
unset ($query['id']);

}

if (lenmpty($query['format']))

{
$segnments[] = $query[' format'];
unset ($query[' format']);

}

return $segnents;

}

Will return:

Array(
"view ,
'123',
'rss'

),

This will in turn be passed back to JRoute::_() which will construct the final SEF URL of
example/view/123/rss.

{ComponentName}ParseRoute()

This method is automatically called on each page view. It is passed an array of segments of the
SEF URL that called the page. That is, a URL of example/view/123/rss would be separated by
the forward slashes with the first segment automatically being associated with a component
name. The rest are stored in an array and passed to {ComponentName}ParseRoute() which
then associates each segment with an appropriate variable name based on the segment's
position in the array.

function Exanpl ePar seRout e($segnent s)

{

$vars = array();

if (enmpty($segnents))
{

COMPONENTS

return $vars;

}
if (isset($segnments[0]))

{

$vars['task'] = $segnments[O0];

}
if (isset($segnents[1]))

{
$vars['id'] = $segnents[1];

}
if (isset($segnments[2]))

{

$vars['format'] = $segments[2];

}

return $vars;

Note: Position of segments is very important here. A URL of example/view/123/rss could yield
completely different results than a URL of example/rss/view/123.

COMPONENTS

Packaging
Overview

Packaging a component for distribution is relatively easy. All front-end files are places within a
directory called /site and all administration files are placed within a directory called /admin.
Here's what a typical package will look like:

/ com { conponent nane}
{ conmponent nane} . xn
/site
{ conponent nane} . php
controller.php
/views
[{vi ewnane}
/ t npl
defaul t. php
/ model s
{ rodel nane}. php
/controllers
{control | ernane}. php
[adm n
{ conmponent nane}. php
controller. php
/views
[{vi ewnane}
[t npl
def aul t. php
/ model s
{ model nane}. php
/controllers
{control | ernane}. php

Just "zip" up the primary directory into a compressed archive file. When the ZIP file is installed,
the language file is copied to
/language/{LanguageName}/{LanguageName}.{ComponentName}.ini and is loaded each time
the module is loaded. All of the other files are copied to the /components/{ComponentName}
and /administrator/components/{ComponentName}directories of the Joomla! installation.

http://www.tcpdf.org

