CONTROLLERS

Controllers
Overview

The controller is responsible for responding to user actions. In the case of a web application, a
user action is (generally) a page request. The controller will determine what request is being
made by the user and respond appropriately by triggering the model to manipulate the data
appropriately and passing the model into the view. The controller does not display the data in
the model, it only triggers methods in the model which modify the data, and then pass the model
into the view which displays the data.

Most components have two controllers: one for the front-end and one for the back-end.

Creating the Front-end Controller

Joomla! 1.5 Method

Our component only has one task - greet the world. Therefore, the controller will be very simple.
No data manipulation is required. All that needs to be done is the appropriate view loaded. We
will have only one method in our controller: display(). Most of the required functionality is built
into the JController class, so all that we need to do is invoke the JController::display() method.

The code for the base controller com_hello/controller.php is:

<?php
/'l No direct access
defined(' JEXEC) or die('Restricted access');

jinport('joon a.application.conponent.controller');

/**

* Hell o Worl d Conmponent Controller
*
* @ackage Joom a. Tutorials
* @ubpackage Conponents
*/
class HelloController extends JController

{

/**

* Method to display the view

*

* @ccess public

*/
public function display()
{

CONTROLLERS

parent::display();

The JController constructor will always register a display() task and unless otherwise specified
(using the registerDefaultTask() method), it will set it as the default task.

This barebones display() method isn't really even necessary since all it does is invoke the
parent constructor. However, it is a good visual clue to indicate what is happening in the
controller.

The JController::display() method will determine the name of the view and layout from the
request and load that view and set the layout. When you create a menu item for your
component, the menu manager will allow the administrator to select the view that they would
like the menu link to display and to specify the layout. A view usually refers to a view of a certain
set of data (i.e. a list of cars, a list of events, a single car, a single event). A layout is a way that
that view is organized.

In our component, we will have a single view called hello, and a single layout (default).
HUBzero Method

Most HUBzero component controllers will differ from Joomla! 1.5 in some important ways. This
is, in part, due to legacy issues. Some changes are made to aid in development while others
may simply be a difference in philosophy. Note, however, that no differences require hacking or
altering Joomla! in any way and HUBzero methodologies will run on any stock Joomla! install.

<?php
/1 No direct access
defined(' _JEXEC) or die('Restricted access');

cl ass Hell oController extends JObject

{

private $_name = NULL;
private $_data = array();
private $_task = NULL;

public function _ construct($config=array())

{
$this-> redirect = NULL;
$t hi s->_nessage = NULL;

CONTROLLERS

$t hi s-> nessageType = 'nessage';

/[l Set the controller nane
if (enpty($this-> name)) {
if (isset($config['name'])) {
$t hi s->_name = $config[' nane'];

} else {
$r = null;
if (!'preg_match('/(.*)Controller/i', get _class($this), $r)) {
echo "Controller:: construct() : Can't get or parse class nane.”
}
$this-> nane = strtolower($r[1]);
}
}
/'l Set the conponent nane
$this-> option = 'com'. $this-> nane;
}
N
public function __ set($property, $val ue)
{
$t hi s-> dat a[$property] = $val ue;
}
N

public function _ get($property)

{
if (isset($this-> data]$property])) {
return $this->_datal $property];

}
}
N
public function execute()
{$this->_task = JRequest::getString('task', '');

switch ($this->_task)

{
default: $this->hello(); break;

}

CONTROLLERS

public function redirect()
{
if ($this->redirect !'= NULL) {
$app =& JFactory::getApplication();
$app->redirect($this-> redirect, $this-> nmessage);
}
}

protected function hello()
{
/1l Instantiate a new vi ew
$view = new JViewm array('nanme'=>"hello'));

/1l Pass the view any data it may need
$view>greeting = "Hello, Wrld!'";

/[l Set any errors
if ($this->getError()) {
$vi ew >set Error($this->getError());

}

/1 Qutput the HTM
$vi ew >di spl ay();

There appears to be a bit more going on here than in the Joomla! example but both code
examples are doing essentially the same thing, as we'll explain.

The first, and most important, difference to note is that we're extending JObject rather than

JController. Since we're not employing JController, we need to set up many of our methods
manually. Much of it, such as the ___constructor and redirect methods are very similar to the
Joomla! method--they're simply being established here rather than in JController.

One key difference is how the execute() method is handled. In Joomla! 1.5, any public method
is assumed to be an executable task. In the HUBzero method, we're explicitly declaring a list of
available tasks and what those tasks execute via the switch statement.

CONTROLLERS

Finally, in our display method, we're instantiating a new view, assigning it some data, and then
displaying the output.

http://www.tcpdf.org

