
INSTALLATION

Installation

What is HUBzero?

HUBzero is a platform used to create dynamic web sites for scientific research and educational
activities. With HUBzero, you can easily publish your research software and related educational
materials on the web. Powerful middleware serves up interactive simulation and modeling tools
via your web browser. These tools can connect you with rendering farms and powerful Grid
computing resources.

Minimum System Requirements

HUBzero installations require one or more dedicated physical hosts running Debian GNU/Linux
5.0.

Other distributions might theoretically work with some modification, although they would
be totally unsupported.

A typical starter HUBzero installation might consist of a single physical server with dual 64-bit
quad-core CPUs, 16 Gigabytes of RAM and a terabyte of disk

It is possible to run HUBzero inside of a virtual machine such as ones created by VMware and
VirtualBox. While fully functional there will would significant performance and resource
limitations in such an environment.

Target Audience

This document and the installation of a HUBzero system has a target audience of experienced
Linux administrators (preferably experienced with Debian GNU/Linux).

What's Included

HUBzero is composed of the following packages (subject to change):

Package Name Purpose
hubzero-addrepo Creates project areas for tool development
hubzero-apache2 Apache 2.2 Site Configuration Files for

HUBzero
hubzero-app HUBzero App Installer
hubzero-app-invoke HUBzero application (tool) invocation scripts
hubzero-app-workspace HUBzero App providing a lightweigth Linux

desktop, for app/tool development

 1 / 35

INSTALLATION

hubzero-cms The HUBzero Content Management System
(based on Joomla! framework)

hubzero-cms-joomla Joomla! framework used by HUBzero
hubzero-cms-setup Customizes the HUBzero CMS database
hubzero-config Configures a HUBzero server and provides an

automated installation script
hubzero-expire-sessions Expires unused app/tool sessions
hubzero-filexfer Transfer files between App Sessions and user's

desktop
hubzero-filexfer-xlate Support daemon for the filexfer program
hubzero-firewall HUBzero firewall that protects app/tool sessions
hubzero-icewm Linux ICE window manager configuration, used

in workspaces
hubzero-icewm-captive Linux ICE window manager specially crafted to

support tools in a sessions
hubzero-icewm-themes The HUBzero Linux ICE window manager

theme, used in workspaces
hubzero-mw-client HUBzero middleware - client
hubzero-mw-service HUBzero middleware - execution host session

manager
hubzero-mw-session HUBzero middleware - per session tools
hubzero-mysql MySQL configuration package for HUBzero
hubzero-openldap OpenLDAP configuration package for HUBzero
hubzero-python HUBzero python API module
hubzero-rappture The Rapid APPlication infrastrucTURE toolkit

for building scientific tools
hubzero-rappture-session Session support packages for Rappture
hubzero-ratpoison-captive Linux window manager, used in app/tool

sessions
hubzero-submit-client The session based part of the job submission

server
hubzero-submit-distributor Part of the job submission server
hubzero-submit-server Part of the job submission server
hubzero-telequotad Disk quota monitor
hubzero-texvc Helper utility to generate math fomulas for wiki

markup
hubzero-trac-mysqlauthz Plug-in for MySQL user auth in project

development areas
hubzero-twm-captive Linux TWM window manager, used in app/tool

sessions
hubzero-use Command for configuring the environment

within a workspace
hubzero-usermap File permission mapping FUSE filesystem used

by WebDAV
hubzero-vncproxy Routes vnc between web server and app/tool

session

 2 / 35

INSTALLATION

icewm Modified Linux ICE window manager, used in
workspaces

tightvnc-java Modified VNC Client that receives app/tool
sessions within a web browser

vnc4server Modified VNC Server that sends app/tool
sessions to the web browser

Source Code

You'll find most of the source code within the web root of a working hub. But you can get source
code for the middleware and all other parts by installing source code via the package
mechanism. Please refer to Section 1.2.7 for instructions.

 3 / 35

/documentation/1.0.0/installation/Setup.linux

INSTALLATION

Debian Build

Install Basic Operating System

The latest version of Debian GNU/Linux 5.0 (5.0.8 as of this writing at
http://www.debian.org/releases/lenny/debian-installer/) should be installed on each physical host
used by a HUBzero installation. HUBzero has packaging support for i386 (32bit) and amd64
(64bit) Intel architectures. However the 32bit version gets more limited testing. Debian 6.0 is not
supported at this time.

It is strongly recommended that you install from one of the ISO disk images listed in the above
link. VM images (other than those distributed by HUBzero) and other boutique Debian installs
are known to fail due to incomplete dependencies in the current HUBzero packaging.

Locale Settings

At the initial boot menu choose the command line install.

Choose your language, country, and keyboard (English, United States, and American English
will be the default)

The next step is to enter the hostname and domain name for the system.

Choose the time zone for the system (the time zones will be limited to the country that was
selected previously).

Disk Partitions

The recommended minimum for partitions sizes are 100 GB bootable partition for the root
filesystem, 50 GB export filesystem for each HUBzero server, and an appropriately sized swap
partition.

Partitioning method: (Guided - use entire disk)

Select disk to partition: (SCSI1 (0,0,0))

Partitioning scheme: (All files in one partition)
Select each partition and delete
Select #1 - then Delete the partition
Select #5 - then Delete the partition
Select free space
create a new partition
set size (ex: 100 GB)

 4 / 35

http://www.debian.org/releases/lenny/debian-installer/

INSTALLATION

type is primary
location is beginning
Done setting up partition
Select free space
create a new partition
set size (ex: 1 GB)
type is primary
location is beginning
Select Use As: set to swap area
Done setting up partition
Select free space
create a new partition
use all available space left
type is primary
Select mount point, change to do not mount it

Done setting up partition

Finish partitioning and write changes to disk

Want to return - say No

Write the changes to disks? Select Yes

Base System Accounts

The install will begin installing the base system then ask for the creation of the root password
and to create a new user. It is suggested to skip the step of creating a new user.

Skip the step of creating a new user
Select (takes to root password screen)
Select (takes to Debian installer main menu)
Select Configure the package manager. (next one down)

Package Manager

Choose the package manager archive to use for downloads. ftp.us.debian.org is a good choice
for the archive mirror for installs based in the U.S. and leave the HTTP proxy information blank
unless your network requires it.

The install will begin retrieving a list of package options and configure base components. The

 5 / 35

INSTALLATION

install may prompt to participate in the package usage survey. The decision to participate or not
will not affect the install and is up to the individual system administrator.

In the Software Selection option, deselect â€˜Desktop environmentâ€™ but leave â€˜Standard
systemâ€™ then choose to install the GRUB boot loader to the master boot record and finish the
installation (when the installation is complete your system will reboot into a minimal Debian
GNU/Linux system).

 6 / 35

INSTALLATION

Debian GNU/Linux

Install Basic Operating System

The latest version of Debian GNU/Linux 5.0 (5.0.8 as of this writing) should be installed on each
physical host used by a HUBzero installation.

To install Debian GNU/Linux, you can easily obtain a copy, and then follow the installation
instructions for your architecture.

Installing Debian GNU/Linux using a a small bootable CD is the simplest method.

When installing Debian GNU/Linux be sure to do the following:

Ensure the disk(s) are partitioned to have at least:
A bootable partition at least 100.0 GB in size for the root filesystem.
An empty partition at least 50.0 GB in size (note the device name of this partition
for later)
An appropriately sized swap partition.

When prompted to select an installation package just select "Standard System", other
packages will be added later

When the installation is complete your system will reboot into a minimal Debian GNU/Linux
system.

Don't forget to remove your installation media and/or change your server's boot media order if
you changed them prior to installation.

Set hostname

Optional. If you didn't specify the fully qualified domain name when running setup you will need
to set it here.

HUBzero expects the `hostname` (and `hostname -f`) command to return the fully qualified
hostname for the system.

hostname myhub.org

To make the change permanent you must also edit the file /etc/hostname, which can be done
simply with:

echo "myhub.org" > /etc/hostname

 7 / 35

http://www.debian.org/
http://www.debian.org/distrib/
http://debian.org/releases/stable/installmanual
http://debian.org/releases/stable/installmanual
http://www.debian.org/distrib/netinst#smallcd

INSTALLATION

Fix hosts

Now edit /etc/hosts by making sure that a line exists that looks like

192.168.2.10 full-host-name optional-short-alias-of host

The number 192.168.2.10 must be replaced by the current IP number of your server. This is
normally reported by the 'ifconfig eth0' command.

Do not remove the line that looks like

127.0.0.1 localhost

Delete local user

If you created a local user account when installing the operating system now would be a good
time to delete it before it causes you future problems.

deluser username

Configure Networking

Optional. If you didn't configure networking during installation you will need to do so now.

For help with networking setup try this link.

Setting up your IP address.

The IP addresses associated with any network cards you might have are read from the file
/etc/network/interfaces. This file has documentation you can read with:

man interfaces

A sample entry for a machine with a static address would look something like this:

The loopback network interface

 8 / 35

http://www.debian-administration.org/article/An_introduction_to_Debian_networking_setup

INSTALLATION

auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
 address 192.168.1.90
 gateway 192.168.1.1
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255

Here we've setup the IP addresss, the default gateway, and the netmask.

For a machine running DHCP the setup would look much simpler:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface - use DHCP to find our address
auto eth0
iface eth0 inet dhcp

(If you're using a DHCP based setup you must have a DHCP client package installed - usually
one of pump or dhcp-client.)

If you make changes to this file you can cause them to take effect by running:

/etc/init.d/networking restart

Setting up DNS

Use whatever nameserver and other options as recommended by your ISP. If you used DHCP
to set up networking it is likely this has already been set.

When it comes to DNS setup Debian doesn't differ from other distributions. To cause your
machine to consult with a particular server for name lookups you simply add their addresses to

 9 / 35

INSTALLATION

/etc/resolv.conf.

For example a machine which should perform lookups from the DNS server at IP address
192.168.1.10 would have a resolv.conf file looking like this:

nameserver 192.168.1.10

Configure Advanced Package Tool

Now configure what debian distribution mirror to use and the location of the HUBzero package
repository by editing /etc/apt/sources.list to look like:

deb http://ftp.us.debian.org/debian/ lenny main
deb-src http://ftp.us.debian.org/debian/ lenny main

deb http://security.debian.org/ lenny/updates main
deb-src http://security.debian.org/ lenny/updates main

deb http://volatile.debian.org/debian-volatile lenny/volatile main
deb-src http://volatile.debian.org/debian-volatile lenny/volatile main

deb http://packages.hubzero.org/deb buck main contrib non-free
deb-src http://packages.hubzero.org/deb buck main contrib non-free

You will need to get and install the hubzero archive key to be able to verify packages from the
hubzero archive:

wget http://packages.hubzero.org/deb/hubzero-signing-
key.asc -q -O - | apt-key add -

Once the public key for http://packages.hubzero.org has been install you can then upgrade the
current packages to their latest releases.

apt-get update
apt-get upgrade

 10 / 35

INSTALLATION

SSH

Next we install fail2ban and ssh

apt-get install fail2ban ssh

At this point you can continue configuration and setup remotely if that is more convenient.

Enable OpenVZ

If you are installing this in a VirtualBox VM you must enable PAE/NX support. Go to system ->
processor of your VM, select "Enable PAE/NX".

To use OpenVZ you must use an OpenVZ enabled kernel which is easily installed.

HUBzero makes extensive use of OpenVZ containers so it is recommended to just use the
OpenVZ enabled kernel on all HUBzero servers. To install a 64 bit kernel run the command:

apt-get install linux-image-2.6-openvz-amd64

For 32 bit kernels, run the command:

apt-get install linux-image-2.6-openvz-686

You will need to reboot the server to activate the new kernel.

reboot

Once you have rebooted you can verify the new kernel is active

uname -a
Linux myhub.hubzero.org 2.6.26-2-openvz-
amd64 #1 SMP Thu Nov 5 03:06:00 UTC 2009 x86_64 GNU/Linux

 11 / 35

http://wiki.openvz.org/

INSTALLATION

or for 32 bit kernels

uname -a
Linux myhub.hubzero.org 2.6.26-2-openvz-686 #1 SMP Thu Nov 5 03:06:00
UTC 2009 x86_64 GNU/Linux

With the new kernel active you can optionally remove the old one. For 64 bit kernels run:

apt-get purge linux-image-2.6.26-2-amd64

or for 32 bit kernels run:

apt-get purge linux-image-2.6.26-2-686

Prepare Fileystem

The root filesystem ('/') runs with quotas disabled and contains the primary operating system for
the server and for each OpenVZ container hosted on the server.

Each HUBzero server may use an addition partition for use appropriate to the function of the
server (web document root, project data, home directories, etc).

If you did not create an empty partition during setup, create one now using your favorite disk
partitioning tool. Be sure to note the device name for the partition you create as it will be used
below.

Once you have an empty partition ready we can install a filesystem. Replace "/dev/PART" with
the device name for the empty partition you have created (e.g., /dev/sda2). The command "fdisk
-l" will list all paritions the system knows about.

mke2fs -j /dev/PART
e2fsck -f -C 0 /dev/PART
mkdir /export

Then make sure the following line appears in /etc/fstab

 12 / 35

INSTALLATION

/dev/PART /export ext3 defaults,quota,errors=remount-
ro 0 2

Then mount the new filesystem

mount /export

Bind mount /home

Create a 'home' directory in our new /export filesystem. move the contents of the default home
directory to the new location, then bind mount new location over the old.

mkdir -p /export/home/myhub
mv /home/* /export/home
mount --bind /export/home /home

Bind mount /opt

Currently HUBzero uses the /opt directory for storing subversion and trac data as well as some
of hubzero supporting software as well. We recognize this may not be the best organization.

Create a 'opt' directory in our new /export filesystem. move the contents of the default /opt
directory to the new location, then bind mount new location over the old.

mkdir /export/opt
mv /opt/* /export/opt
mount --bind /export/opt /opt

Bind mount /apps

Currently HUBzero uses the /apps directory for storing installed tools and other software that
needs to be available to each execution container.

Create a 'apps' directory in our new /export filesystem and in the root filesystem. Then bind
mount /export/apps over /apps.

 13 / 35

INSTALLATION

mkdir /export/apps
mkdir /apps
mount --bind /export/apps /apps

Bind mount /www

HUBzero uses the /www directory for storing the document root and supporting directories
needed by the web server.

Create a 'www' directory in our new /export filesystem and in the root filesystem. Then bind
mount /export/www over /www.

mkdir -p /export/www
mkdir /www
mount --bind /export/www /www

Update /etc/fstab

Now edit /etc/fstab with the bind mounts we created above by adding the following lines

/export/opt /opt none bind,defaults
0 0
/export/apps /apps none bind,defaults
0 0
/export/home /home none bind,defaults
0 0
/export/www /www none bind,defaults
0 0

 14 / 35

INSTALLATION

Hubzero Installation

Hubzero Software Installation

This section describes the automated installation of the HUBzero software. It assumes that the
server has been setup with a basic Debian installation as described in the previous sections of
the documentation.

Note It is very important that the server hostname be described properly in the file
/etc/hostname, that the server's fully qualified domain name be accurately reported by the
'hostname -f' command and that the file /etc/hosts contain an accurate mapping of the server's
IP address to fully qualified hostname. Please refer to the previous section of the documentation
for details.

To begin the process of installing HUBzero software, run the following command:

apt-get install hubzero-config

This package will ask 12 questions - 6 pertaining to system variables that need to be set and
another 6 passwords needed by the system. If the fully qualified domain name is set properly, 5
of the first 6 questions will contain the proper value by default. The other question is for an email
address that will be used in several places for system notification messages.

The six passwords all require some kind of input. Note that the final password is for the super
administrator admin user. This is the only one that will normally be used by the site maintainer.

Once the questions are answered the package will leave a script called hz-install in the /root
directory. This script will use the information previously entered to fully construct a working
HUBzero server. Run the command by typing:

bash ./hz-install

The software installation process will then start and can take quite a while to finish depending
on the server's network speed. Once the process is complete, you should be able to access
your HUBzero server using a browser. You can log in with the admin account and begin
customizing your site.

 15 / 35

INSTALLATION

Mail

Install

We need to reconfigure exim4 to enable outgoing email (exim4 got installed earlier as a
prerequisite for the mysql server).

dpkg-reconfigure exim4-config

Select "internet site; mail is sent and received directly using SMTP" then configure as
appropriate for your site.
Enter the FQDN of your site when asked
Listen on all IP addresses (i.e., make list blank)
Other destinations for which mail is accepted: should be made blank
Domains to relay mail for: should be made blank
Machines to relay mail for: should be made blank
Keep num,ber of DNS-queries minimal (Dial-on-Demand): No
Delivery method for local mail: mbox format in /var/mail/
Split configuration into small files? No

This is just an example. Mail should be configured however the site needs. The CMS just
expects to be able send outgoing email.

 16 / 35

INSTALLATION

Rappture

Install

The Rappture application is install in the apps directory along with proper links.

apt-get install hubzero-rappture

Session Installation

Rappture is used from inside a container and needs several other packages installed to allow
use of all its features. This process has been simplified by using the hubzero-rappture-session
with only contains the dependencies needed to pull in these other packages.

chroot /var/lib/vz/template/debian-5.0-amd64-maxwell
apt-get update
apt-get upgrade
apt-get install hubzero-rappture-session

This is also a good time to add some default paths to your session environment so that it
doesn't need to be whenever someone logs in. Modify the /etc/profile file as follows:

Change

if ["`id -u`" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
else
 PATH="/usr/local/bin:/usr/bin:/bin:/usr/games"
fi

To

if ["`id -u`" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
else
 PATH="/apps/rappture/bin:/apps/bin:
/usr/local/bin:/usr/bin:/bin:/usr/games"

 17 / 35

INSTALLATION

fi

Be sure to exit the chroot environment when you are done:

exit

A workspace may need to be opened and closed a few times before the changes to the session
template appear in a workspace.

Test

Rappture comes with several demostration scripts that can effectively test many parts of the
package. These demonstrations must be copied to a user's home directory within a workspace
before running.

$ mkdir examples
$ cp -r /apps/rappture/examples/* examples/.
$ cd examples
$./demo.bash

A window should open on the workspace showing that part of the demonstration. Close that
window to see the next demonstration. Some demonstrations may need something inputted to
work properly (such as the graphing calculator).

 18 / 35

INSTALLATION

Filexfer

Install filexfer

Install the filexfer packages

apt-get install hubzero-filexfer

apt-get install hubzero-filexfer-xlate

Configure Apache for filexfer

Modify the hub site file at /etc/apache2/sites-available/hub-ssl

The apache hub site configuration files are preconfigured to support this. Uncommented the two
highlighted lines as shown below. Note that the relative placement of these lines is important.

Edit /etc/apache2/sites-available/hub-ssl

<VirtualHost *:443>
 RewriteEngine on
 RewriteMap xlate prg:/usr/lib/mw/bin/filexfer-
xlate
 ...
 ...
 ...
 <Directory /www/myhub>
 Options FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all

 RewriteEngine On

RewriteRule ^filexfer/(.*) ${xlate:$1|nothing} [P,QSA,L]

Then restart apache

 19 / 35

INSTALLATION

/etc/init.d/apache2 restart

 20 / 35

INSTALLATION

Submit

Introduction

The submit command provides a means for HUB end users to execute applications on remote
resources. The end user is not required to have knowledge of remote job submission
mechanics. Jobs can be submitted to traditional queued batch systems including PBS and
Condor.

Installation

apt-get install hubzero-app-submit
apt-get install hubzero-submit-server
apt-get install hubzero-submit-distributor

At completion of the apt-get install commands several files will be located in the directory
/opt/submit. Excluding python files the directory listing should like the following:

 21 / 35

INSTALLATION

Configuration

submit provides a mechanism to execute jobs on machines outside the HUB domain. To
accomplish this feat some configuration is required on the HUB and some additional software
must be installed and configured on hosts in remote domains. Before attempting to configure
submit it is necessary to obtain access to the target remote domain(s). The premise is that a
single account on the remote domain will serve as an execution launch point for all HUB end
users. It is further assumes that access to this account can be made by direct ssh login or using
an ssh tunnel (port forwarding).

Having attained account access to one or more remote domains it is possible to proceed with
submit configuration. To get started the ssh public generated by the installation should be
transferred to the remote domain host(s).

HUB Configuration

The behavior of submit is controlled through a set of configuration files. The configuration files
contain descriptions of the various parameters required to connect to a remote domain,
exchange files, and execute simulation codes. There are separate files for defining remote sites,
staged tools, multiprocessor managers, permissible environment variables, remote job monitors,
and ssh tunneling. Most parameters have default values and it is not required that all

 22 / 35

INSTALLATION

parameters be explicitly defined in the configuration files. A simple example is given for each
category of configuration file.

Sites

Remote sites are defined in the file sites.dat. Each remote site is defined by a stanza indicating
an access mechanism and other account and venue specific information. Defined keywords are

[name] - site name. Used as command line argument (-v/--venue) and in tools.dat
(destinations)
venues - comma separated list of hostnames. If multiple hostnames are listed one site
will chosen at random.
tunnelDesignator - name of tunnel defined in tunnels.dat.
siteMonitorDesignator - name of site monitor defined in monitors.dat.
venueMechanism - possible mechanisms are ssh and local.
remoteUser - login user at remote site.
remoteBatchAccount - some batch systems requirement that an account be provided in
addition to user information.
remoteBatchSystem - the possible batch submission systems include CONDOR, PBS,
and LSF. SCRIPT may also be specified to specify that a script will be executed directly
on the remote host.
remoteBatchQueue - when remoteBatchSystem is PBS the queue name may be
specified.
remoteBatchPartition - slurm parameter to define partition for remote job
remoteBatchPartitionSize - slurm parameter to define partition size, currently for BG
machines.
remoteBatchConstraints - slurm parameter to define constraints for remote job
remoteBinDirectory - define directory where shell scripts related to the site should be
kept.
remoteApplicationRootDirectory - define directory where application executables are
located.
remoteScratchDirectory - define the top level directory where jobs should be executed.
Each job will create a subdirectory under remoteScratchDirectory to isolated jobs from
each other.
remotePpn - set the number of processors (cores) per node. The PPN is applied to PBS
and LSF job description files. The user may override the value defined here from the
command line.
remoteManager - site specific multi-processor manager. Refers to definition in
managers.dat.
remoteHostAttribute - define host attributes. Attributes are applied to PBS description
files.
stageFiles - A True/False value indicating whether or not files should be staged to
remote site. If the the job submission host and remote host share a file system file
staging may not be necessary. Default is True.

 23 / 35

INSTALLATION

passUseEnvironment - A True/False value indicating whether or not the HUB 'use'
environment should passed to the remote site. Default is False. True only makes sense
if the remote site is within the HUB domain.
arbitraryExecutableAllowed - A True/False value indicating whether or not execution of
arbitrary scripts or binaries are allowed on the remote site. Default is True. If set to False
the executable must be staged or emanate from /apps.
members - a list of site names. Providing a member list gives a layer of abstraction
between the user facing name and a remote destination. If multiple members are listed
one will be randomly selected for each job.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.
failoverSite - specify a backup site if site is not available. Site availability is determined
by site probes.
checkProbeResult - A True/False value indicating whether or not probe results should
determine site availability. Default is True.
restrictedToUsers - comma separated list of user names. If the list is empty all users
may garner site access. User restrictions are applied before group restrictions.
restrictedToGroups - comma separated list of group names. If the list is empty all groups
may garner site access.
logUserRemotely - maintain log on remote site mapping HUB id, user to remote batch
job id. If not explicitly set the default value is False.
undeclaredSiteSelectionWeight - used when no site is specified to choose between sites
where selection weight > 0.

An example stanza is presented for a site that is accessed through ssh.

[cluster]
venues = cluster.campus.edu
remotePpn = 8
remoteBatchSystem = PBS
remoteBatchQueue = standby
remoteUser = yourhub
remoteManager = mpich-intel64
venueMechanism = ssh
remoteScratchDirectory = /scratch/yourhub
siteMonitorDesignator = clusterPBS

Tools

 24 / 35

INSTALLATION

Staged tools are defined in the file tools.dat. Each staged tool is defined by a stanza indicating
an where a tool is staged and any access restrictions. The existence of a staged tool at multiple
sites can be expressed with multiple stanzas or multiple destinations within a single stanza. If
the tool requires multiprocessors a manager can also be indicated. Defined keywords are

[name] - tool name. Used as command line argument to execute staged tools. Repeats
are permitted to indicate staging at multiple sites.
destinations - comma separated list of destinations. Destination may exist in sites.dat or
be a grid site defined by a ClassAd file.
executablePath - path to executable at remote site. The path may be given as an
absolute path on the remote site or a path relative to remoteApplicationRootDirectory
defined in sites.dat.
restrictedToUsers - comma separated list of user names. If the list is empty all users
may garner tool access. User restrictions are applied before group restrictions.
restrictedToGroups - comma separated list of group names. If the list is empty all groups
may garner tool access.
environment - comma separated list of environment variables in the form e=v.
softenvExtensions - per site softenv environment declaration for TeraGrid sites running
GRAM4.
remoteManager - tool specific multi-processor manager. Refers to definition in
managers.dat. Overrides value set by site definition.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a staged tool maintained in the yourhub account on a
remote site.

[earth]
destinations = cluster
executablePath = ${HOME}/apps/planets/bin/earth.x
remoteManager = mpich-intel

[sun]
destinations = cluster
executablePath = ${HOME}/apps/stars/bin/sun.x
remoteManager = mpich-intel

Monitors

 25 / 35

INSTALLATION

Remote job monitors are defined in the file monitors.dat. Each remote monitor is defined by a
stanza indicating where the monitor is located and to be executed. Defined keywords are

[name] - monitor name. Used in sites.dat (siteMonitorDesignator)
venue - hostname upon which to launch monitor daemon. Typically this is a cluster
headnode.
venueMechanism - monitoring job launch process. The default is ssh.
tunnelDesignator - name of tunnel defined in tunnels.dat.
remoteUser - login user at remote site.
remoteMonitorCommand - command to launch monitor daemon process.
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a remote monitor tool used to report status of PBS jobs.

[clusterPBS]
venue = cluster.campus.edu
remoteUser = yourhub
remoteMonitorCommand = ${HOME}/SubmitMonitor/monitorPBS.py

Multi-processor managers

Multiprocessor managers are defined in the file managers.dat. Each manager is defined by a
stanza indicating the set of commands used to execute a multiprocessor simulation run. Defined
keywords are

[name] - manager name. Used in sites.dat and tools.dat.
computationMode - indicate how to use multiple processors for a single job. Recognized
values are mpi, parallel, and matlabmpi. Parallel application request multiprocess have
there own mechanism for inter process communication. Matlabmpi is used to enable the
an Matlab implementation of MPI.
preManagerCommands - comma separated list of commands to be executed before the
manager command. Typical use of pre manager commands would be to define the
environment to include a particular version of MPI amd/or compiler, or setup MPD.
managerCommand - manager command commonly mpirun. It is possible to include
strings that will be sustituted with values defined from the command line.
postManagerCommands - comma separated list of commands to be executed when the
manager command completes. A typical use would be to terminate an MPD setup.
mpiRankVariable - define environment variable set by manager command to define

 26 / 35

INSTALLATION

process rank. Recognized values are: MPIRUN_RANK, GMPI_ID, RMS_RANK,
MXMPI_ID, MSTI_RANK, PMI_RANK, and OMPI_MCA_ns_nds_vpid. If no variable is
given an attempt is made to determine process rank from command line arguments.
environment - comma separated list of environment variables in the form e=v.
moduleInitialize - initialize module script for sh
modulesUnload - modules to be unloaded clearing way for replacement modules
modulesLoad - modules to load to define mpi and other libraries
state - possible values are enabled or disabled. If not explicitly set the default value is
enabled.

An example stanza is presented for a typical MPI instance. The given command should be

suitable for /bin/sh execution.

[mpich-intel]
preManagerCommands = . ${MODULESHOME}/init/sh, module load mpich-
intel/11.1.038
managerCommand = mpirun -machinefile ${PBS_NODEFILE} -np NPROCESSORS

The token NPROCESSORS is replaced by an actual value at runtime.

Environment variables

Legal environment variables are listed in the file environmentwhitelist.dat. The objective is to

 27 / 35

INSTALLATION

prevent end users from setting security sensitive environment variables while allowing
application specific variables to be passed to the remote site. Environment variables required to
define multiprocessor execution should also be included. The permissible environment variables
should be entered as a simple list - one entry per line. An example file allowing use of a
variables used by openmp and mpich is presenter here.

environment variables listed here can be specified from the command
line with -e/--env option. Attempts to specify other environment varia
bles will be ignored and the values will not be passed to the remote s
ite.

OMP_NUM_THREADS
MPICH_HOME

Tunnels

In some circumstances access to clusters is restricted such that only a select list of machines is
allowed to communicate with the cluster job submission node. The machines that are granted
such access are sometimes referred to as gateways. In such circumstances ssh tunneling or
port forwarding can be used to submit HUB jobs through the gateway machine. Tunnel
definition is specified in the file tunnels.dat. Each tunnel is defined by a stanza indicating
gateway host and port information. Defined keywords are

[name] - tunnel name.
venue - tunnel target host.
venuePort - tunnel target port.
gatewayHost - name of the intermediate host.
gatewayUser - login user on gatewayHost.
localPortOffset - local port offset used for forwarding. Actual port is localPortMinimum +
localPortOffset

An example stanza is presented for a tunnel between the HUB and a remote venue by way of

an accepted gateway host.

 28 / 35

INSTALLATION

[cluster]
venue = cluster.campus.edu
venuePort = 22
gatewayHost = gateway.campus.edu
gatewayUser = yourhub
localPortOffset = 1

Initialization Scripts and Log Files

The submit server and job monitoring server must be started as daemon processes running on
the the submit host. If ssh tunneling is going to be used an addition server must be started as a
daemon process. Each daemon process writes to a centralized log file facilitating error
recording and debugging.

Initialize daemon scripts

Scripts for starting the server daemons are provided and installed in /etc/init.d. The default
settings for when to start and terminate the scripts are adequate.

Log files

Submit processes log information to files located in the /var/log/submit directory tree. The exact
location varies depending on the vintage of the installation. Each process has its own log file.
The three most important log files are submit.log, distributor.log, and monitorJob.log.

submit.log

The submit.log file tracks when the submit server is started and stopped. Each connection from
the submit client is logged with the command line and client ip address reported. All log entries
are timestamped and reported by client ip address or submit ID once an ID has been assigned.
Entries from all jobs are simultaneously reported and intermingled. The submit ID serves as a
good search key when tracing problems. Examples of startup, job execution, and termination
are given here. The job exit status and time metrics are also recorded in the MyQSL database
JobLog table.

[Sat Jan 21 14:32:39 2012] Startup: Using configdir /opt/submit
[Sat Jan 21 14:32:39 2012] Startup: Backgrounding process.
[Sat Jan 21 14:32:39 2012] Startup: Listening: protocol='tcp', host=''

 29 / 35

INSTALLATION

, port=830
[Sat Jan 21 14:32:39 2012] Startup: Listening: protocol='tls', host=''
, port=831

[Thu Feb 2 11:55:57 2012] 128.46.19.176: Connection to tls://:831 fro
m ('128.46.19.176', 49737)
[Thu Feb 2 11:55:57 2012] 128.46.19.176: Server will time out in 60 s
econds.
[Thu Feb 2 11:55:57 2012] 128.46.19.176: Server will time out in 60 s
econds.
[Thu Feb 2 11:55:58 2012] 128.46.19.176: Args are:['/apps/bin/submit'
, '-n', '8', '-v', 'coates', '-w', '4.000000:00:00', '-i', 'BSLAB_512_
RUN', 'bandstrlab-r2091', '/home/nanohub/clarksm/data/sessions/460378L
/BSLAB_512_RUN/OMEN_input_1_512.cmd']
[Thu Feb 2 11:55:58 2012] 2190962: The filesystem is shared.
[Thu Feb 2 12:07:58 2012] 2190962: Job Status: venue=1:sshPBS:3934644
:coates.rcac.purdue.edu status=0 cpu=200.610000 real=36.000000
 wait=619.000000
[Thu Feb 2 12:07:58 2012] 2190962: Server exiting.

[Thu Feb 2 09:38:30 2012] Startup: Server was terminated by a signal.
[Thu Feb 2 09:38:30 2012] Startup: Job Status: venue=any status=65534
 cpu=0.000000 real=0.000000 wait=0.000000
[Thu Feb 2 09:38:30 2012] Startup: EXCEPTION IN MAINLOOP: int argumen
t required
[Thu Feb 2 09:38:30 2012] Startup: Server fell out of mainloop().
[Thu Feb 2 09:38:30 2012] Startup: Server exiting.

distributor.log

The distributor.log file tracks each job as it progresses from start to finish. Details of remote site
assignment, queue status, exit status, and command execution are all reported. All entries are
timestamped and reported by submit ID. The submit ID serves as the key to join data reported
in submit.log. An example for submit ID 2190962 is listed here. Again the data for all jobs are
intermingled.

[Thu Feb 2 11:55:59 2012] 2190962: command = tar vchf 02190962_01_inp

 30 / 35

INSTALLATION

ut.tar --exclude='*.svn*' -C /home/nanohub/clarksm/data/sessions/46037
8L .__local_jobid.02190962_01 BSLAB_512_RUN -C /home/nanohub/clarksm/d
ata/sessions/460378L/BSLAB_512_RUN OMEN_input_1_512.cmd
[Thu Feb 2 11:55:59 2012] 2190962: remoteCommand bandstrlab-
r2091 ./BSLAB_512_RUN/OMEN_input_1_512.cmd
[Thu Feb 2 11:55:59 2012] 2190962: command = genuserid
[Thu Feb 2 11:55:59 2012] 2190962: IDENTITY = /tmp/id.uBYdxy4FUw
[Thu Feb 2 11:55:59 2012] 2190962: command = update-known-
hosts coates.rcac.purdue.edu
[Thu Feb 2 11:55:59 2012] 2190962: workingDirectory /scratch/lustreA/
n/nano0/nanoHUBjobs/1328219759_02190962_01
[Thu Feb 2 11:55:59 2012] 2190962: command = tar vrhf 02190962_01_inp
ut.tar --exclude='*.svn*' -C /home/nanohub/clarksm/data/sessions/46037
8L/02190962_01 02190962_01.pbs 02190962_01.sh
[Thu Feb 2 11:55:59 2012] 2190962: command = nice -n 19 gzip 02190962
_01_input.tar
[Thu Feb 2 11:55:59 2012] 2190962: command = cat /home/nanohub/clarks
m/data/sessions/460378L/02190962_01/02190962_01_input.tar.gz | ssh -T
-x -a -i /tmp/id.uBYdxy4FUw nano0@coates.rcac.purdue.edu "${HOME}/bin/
receiveinput.sh /scratch/lustreA/n/nano0/nanoHUBjobs/1328219759_021909
62_01 .__timestamp_transferred.02190962_01"
[Thu Feb 2 11:56:01 2012] 2190962: .__local_jobid.02190962_01
[Thu Feb 2 11:56:01 2012] 2190962: command = ssh -T -x -a -i /tmp/id.
uBYdxy4FUw nano0@coates.rcac.purdue.edu "${HOME}/bin/submitbatchjob.sh
 /scratch/lustreA/n/nano0/nanoHUBjobs/1328219759_02190962_01 ./0219096
2_01.pbs"
[Thu Feb 2 11:56:01 2012] 2190962: remoteJobId = 3934644.coates-
adm.rcac.purdue.edu
[Thu Feb 2 11:56:01 2012] 2190962: confirmation: S(1):N Job
[Thu Feb 2 11:56:01 2012] 2190962: status:Job N coates
[Thu Feb 2 11:56:06 2012] 2190962: status:Simulation Q coates
[Thu Feb 2 12:07:42 2012] 2190962: status:Simulation D coates
[Thu Feb 2 12:07:42 2012] 2190962: waitForBatchJobs: nCompleteRemoteJ
obIndexes = 1, nIncompleteJobs = 0, abortGlobal = False
[Thu Feb 2 12:07:42 2012] 2190962: command = ssh -T -x -a -i /tmp/id.
uBYdxy4FUw nano0@coates.rcac.purdue.edu "${HOME}/bin/transmitresults.s
h /scratch/lustreA/n/nano0/nanoHUBjobs/1328219759_02190962_01" | tar x
zmf - --ignore-case --exclude '*hub-
proxy.*' -C /home/nanohub/clarksm/data/sessions/460378L/02190962_01
[Thu Feb 2 12:07:57 2012] 2190962: command = ssh -T -x -a -i /tmp/id.
uBYdxy4FUw nano0@coates.rcac.purdue.edu "${HOME}/bin/cleanupjob.sh /sc
ratch/lustreA/n/nano0/nanoHUBjobs/1328219759_02190962_01"
[Thu Feb 2 12:07:58 2012] 2190962: venue=1:sshPBS:3934644:coates.rcac
.purdue.edu status=0 cputime=200.610000 realtime=36.000000 waittime=61
9.000000 ncpus=8

 31 / 35

INSTALLATION

monitorJob.log

The monitorJob.log file tracks the invocation and termination of each remotely executed job
monitor. The remote job monitors are started on demand when job are submitted to remote
sites. The remote job monitors terminate when all jobs complete at a remote site and no new
activity has been initiated for a specified amount of time - typically thirty minutes. A typical report
should look like:

[Thu Feb 2 11:05:53 2012] (22140) ***********************************
[Thu Feb 2 11:05:53 2012] (22140) * distributor job monitor started *
[Thu Feb 2 11:05:53 2012] (22140) ***********************************
[Thu Feb 2 11:05:53 2012] (22140) loading active jobs
[Thu Feb 2 11:05:53 2012] (22140) 73 jobs loaded from DB file
[Thu Feb 2 11:05:53 2012] (22140) 73 jobs loaded from dump file
[Thu Feb 2 11:05:53 2012] (22140) 2 jobs purged
[Thu Feb 2 11:05:53 2012] (22140) 71 monitored jobs
[Thu Feb 2 11:10:33 2012] (22311) Launching coates
[Thu Feb 2 11:10:33 2012] (22140) 72 monitored jobs
[Thu Feb 2 11:10:44 2012] (22140) Update message received from coates
[Thu Feb 2 11:12:14 2012] (22140) Update message received from coates
[Thu Feb 2 11:18:22 2012] (22629) Launching steele-fe01
[Thu Feb 2 11:18:22 2012] (22140) 73 monitored jobs
[Thu Feb 2 11:19:53 2012] (22140) Update message received from steele-
fe01
[Thu Feb 2 11:21:28 2012] (22140) Update message received from steele-
fe01
[Thu Feb 2 11:50:02 2012] (22629) Closing steele-fe01
[Thu Feb 2 11:51:28 2012] (1420) ***********************************
[Thu Feb 2 11:51:28 2012] (1420) * distributor job monitor stopped *
[Thu Feb 2 11:51:28 2012] (1420) ***********************************

It is imperative that the job monitor be running in order for notification of job progress to occur. If
users report that their job appears to hang check to make sure the job monitor is running. If
necessary take corrective action and restart the daemon.

monitorTunnel.log

The monitorTunnel.log file tracks invocation and termination of each ssh tunnel connection. If
users report problems with job submission to sites accessed via an ssh tunnel this log file
should be checked for indication of any possible problems.

 32 / 35

INSTALLATION

Remote Domain Configuration

For job submission to remote sites via ssh it is necessary to configure a remote job monitor and
a set of scripts to perform file transfer and batch job related functions. A set of scripts can be
used for each different batch submission system or in some cases they may be combined with
appropriate switching based on command line arguments. A separate job monitor is need for
each batch submission system. Communication between the HUB and remote resource via ssh

requires inclusion of a public key in the authorized_keys file.

Job monitor daemon

A remote job monitor runs a daemon process and reports batch job status to a central job
monitor located on the HUB. The daemon process is started by the central job monitor on
demand. The daemon terminates after a configurable amount of inactivity time. The daemon
code needs to be installed in the location declared in the monitors.dat file. The daemon requires
some initial configuration to declare where it will store log and history files. The daemon does
not require any special privileges any runs as a standard user. Typical configuration for the
daemon looks like this:

The directory defined by MONITORLOGLOCATION needs to be created before the daemon is
started. Sample daemon scripts used for PBS, LSF, Condor, Load Leveler, and Slurm batch
systems are included in directory BatchMonitors.

File transfer and batch job scripts

The simple scripts are used to manage file transfer and batch job launching and termination.
The location of the scripts is entered in sites.dat.

Examples scripts suitable for use with PBS, LSF, Condor, Load Leveler, and Slurm are included

 33 / 35

INSTALLATION

in directory Scripts. After modifications are made to monitors.dat the central job monitor must be
notified. This can be accomplished by stopping and starting the submon daemon or a HUP
signal can be sent to the monitorJob.py process.

File transfer - input files

Receive compressed tar file containing input files required for the job on stdin. The file
transferredTimestampFile is used to determine what newly created or modified files should be
returned to the HUB.

receiveinput.sh jobWorkingDirectory transferredTimestampFile

Batch job script - submission

Submit batch job using supplied description file. If arguments beyond job working directory and
batch description file are supplied an entry is added to the remote site log file. The log file
provides a record relating the HUB end user to the remote batch job identifier. The log file
should be placed at a location agreed upon by the remote site and HUB.

submitbatchjob.sh jobWorkingDirectory jobDescriptionFile

The jobId is returned on stdout if job submission is successful. For an unsuccessful job
submission the returned jobId should be -1.

File transfer - output files

Return compressed tar file containing job output files on stdout.

transmitresults.sh jobWorkingDirectory

File transfer - cleanup

Remove job specific directory and any other dangling files

cleanupjob.sh jobWorkingDirectory

Batch job script - termination

Terminate given remote batch job. Command line arguments specify job identifier and batch
system type.

 34 / 35

INSTALLATION

killbatchjob.sh jobId jobClass

Access Control Mechanisms

By default tools and sites are configured so that access is granted to all HUB members. In some
cases it is desired to restrict access to either a tool or site to a subset of the HUB membership.
The keywords restrictedToUsers and restrictedToGroups provide a mechanism to apply
restrictions accordingly. Each keyword should be followed by a list of comma separated values
of userids (logins) or groupids (as declared when creating a new HUB group). If user or group
restrictions have been declared upon invocation of submit a comparison is made between the
restrictions and userid and group memberships. If both user and group restrictions are declared
the user restriction will be applied first, followed by the group restriction.

In addition to applying user and group restrictions another mechanism is provided by the
boolean keyword arbitraryExecutableAllowed in the sites configuration file. In cases where the
executable program is not pre-staged at the remote sites the executable needs to be transferred
along with the user supplied inputs to the remote site. Published tools will have their executable
program located in the /apps/tools/revision/bin directory. For this reason submitted programs
that reside in /apps are assumed to be validated and approved for execution. The same cannot
be said for programs in other directories. The common case where such a situation arises is
when a tool developer is building and testing within the HUB workspace environment. To grant a
tool developer the permission to submit such arbitrary applications the site configuration must
allow arbitrary executables and the tool developer must belong the system group submit.

Powered by TCPDF (www.tcpdf.org)

 35 / 35

http://www.tcpdf.org

