
CONTROLLERS

Controllers

Overview

All plugins will have a primary class extending JPlugin that contains the logic and events to be
triggered.

Directory & Files

Plugin files are stored in a sub-directory of the /plugins directory. The sub-directory represents
what type the plugin belongs to. This allows for plugins of the same name but for different types.
For example, one could have a plugin named example for both the /system and /search types.

Note: plugins will always be within a type sub-directory and will never be found in the top-level
/plugins directory.

/hubzero
 /plugins
 /{PluginType}
 {PluginName}.php
 {PluginName}.xml

There is no restriction on the file name for the plugin (although it is recommended to stick with
alpha-numeric characters and underscores only), but once you decide on the file name, it will
set the naming convention for other parts of the plugin.

Structure

Here we have a typical plugin class:

<?php
// no direct access
defined('_JEXEC') or die('Restricted access');

jimport('joomla.plugin.plugin');

/**
 * Example system plugin
 */
class plgSystemTest extends JPlugin

 1 / 6

CONTROLLERS

{
 /**
 * Constructor
 *
 * For php4 compatibility we must not use the __constructor as a cons
tructor for plugins
 * because func_get_args (void) returns a copy of all passed argume
nts NOT references.
 * This causes problems with cross-
referencing necessary for the observer design pattern.
 *
 * @access protected
 * @param object $subject The object to observe
 * @param array $config An array that holds the plugin configurat
ion
 * @since 1.0
 */
 function plgSystemTest(&$subject, $config)
 {
 parent::__construct($subject, $config);

 // Do some extra initialization in this constructor if required
 }

 /**
 * Do something onAfterInitialise
 */
 function onAfterInitialise()
 {
 // Perform some action
 }
}

Let's look at this file in detail. Please note that the usual Docblock (the comment block you
normally see at the top of most PHP files) has been omitted for clarity.

The file starts with the normal check for defined('_JEXEC') which ensures that the file will fail to
execute if access directly via the URL. This is a very important security feature and the line must
be placed before any other executable PHP in the file (it's fine to go after all the initial comment
though). The importance of having this check your PHP files cannot be over-emphasised.

Next we use the jimport function to load the library file with the definition of the JPlugin class.

 2 / 6

CONTROLLERS

You will notice that a plugin is simply a class derived from JPlugin (this differs from previous
versions of Joomla!). The naming convention of this class is very important. The formula for this
name is:

plg + Proper case name of the plugin directory + Proper case name of the plugin file without the
extension.

Proper case simply means that we capitalise the first letter of the name. When we join them
altogether it's then referred to as "Camel Case". The case is not that important as PHP classes
are not case-sensitive but it's the convention Joomla! uses and generally makes the code a little
more readable.

For our test system plugin, the formula gives us a class name of:

plg + System + Test = plgSystemTest

Let's move on to the methods in the class.

The first method, which is called the constructor, is completely optional. You only require this is
you want to do some work when the plugin is actually loaded by Joomla!. This happens with a
call to the helper method JPluginHelper::importPlugin(<plugin_type>). This means that you
even if the plugin is never triggered, for whatever reason, you still have an opportunity to
execute code if you need to in the constructor.

In PHP 4 the name of the constructor method is the same as the name of the class. If you were
designing only for PHP 5 you could replace this with the name of __constructor instead.

The remaining methods will take on the name of "events" that are trigger throughout the
execution of the Joomla! code. In the example, we know there is an event called
onAfterInitialise which is the first event called after the Joomla! application sets itself up for
work. For more information on when some events are triggered, see the API Execution Order
page on the Documentation Wiki.

The naming rule here is simple: the name of the method must be the same as the event on
which you want it triggered. The Joomla! Framework will auto-register all the methods in the
class for you.

That's the basics of the plugin PHP file. It's location, name and methods will depend on what
you want to use the plugin for.

Joomla Events

One thing to note about system plugins is that they are not limited to handling just system
events. Because the system plugins are always loaded on each run of the Joomla! PHP, you
can include any triggered event in a system plugin.

 3 / 6

http://docs.joomla.org/API_Execution_Order
http://docs.joomla.org/Category:Development

CONTROLLERS

The events triggered in Joomla! are:

Authentication

onAuthenticate

Content

onPrepareContent
onAfterDisplayTitle
onBeforeDisplayContent
onBeforeContentSave (new in 1.5.4)
onAfterContentSave (new in 1.5.4)

Editors

onInit
onGetContent
onSetContent
onSave
onDisplay
onGetInsertMethod

Editors XTD (Extended)

onDisplay

Search

onSearch
onSearchAreas

System

onAfterInitialise
onAfterRoute
onAfterDispatch
onAfterRender

User

onLoginUser
onLoginFailure
onLogoutUser
onLogoutFailure
onBeforeStoreUser

 4 / 6

CONTROLLERS

onAfterStoreUser
onBeforeDeleteUser
onAfterDeleteUser

XML-RPC

onGetWebServices

For more detailed information on how to create specific plugins, visit the Plugins Category on
the Joomla! Documentation Wiki.

Component Events

The following are events that are triggered from within their respective components:

Groups

onGroupAreas
onGroup
onGroupNew
onGroupDeleteCount
onGroupDelete

Members

onMembersAreas
onMember

Tools

onBeforeSessionInvoke
onAfterSessionInvoke
onBeforeSessionStart
onAfterSessionStart
onBeforeSessionStop
onAfterSessionStop

Resources

onResourcesAreas
onResources

Support

getReportedItem

 5 / 6

http://docs.joomla.org/Category:Plugins

CONTROLLERS

deleteReportedItem

Tags

onTagAreas
onTagView

Usage

onUsageAreas
onUsageDisplay

What's New

onWhatsnewAreas
onWhatsnew

XMessage

onTakeAction
onSendMessage
onMessageMethods
onMessage

XSearch

onXSearchAreas
onXSearch

Powered by TCPDF (www.tcpdf.org)

 6 / 6

http://www.tcpdf.org

